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1 Executive Summary 

Fire modelling using Computational Fluid Dynamics (CFD) can present 
significant run-time challenges for real world fire engineering problems.   
 
This project evaluates the run-time of Fire Dynamics Simulator (FDS) using 
currently available commercial High Performance Computer (HPC) resources in 
comparison with the more modest computer platforms usually available to fire 
engineers. 
 
While there have been numerous studies of FDS performance and there is a 
significant body of literature on parallel processing strategies, both software and 
hardware have continued to evolve over time.  A new study is therefore 
warranted.  
 
This report also considers aspects of CFD run-time optimization through model 
refinements and parallel processing strategies to reduce model run-time.  Many 
of the conclusions reached on these issues simply validate advice contained 
within the FDS User’s Guide and Technical Manual.  
 
The report concludes that commercial HPC facilities provide a viable resource 
for CFD, particularly when a number of moderate-to-large models must be run 
concurrently to meet project timelines.  However modest computational 
resources remain a useful adjunct to commercial HPC for model development 
and for fast processing of a limited number of fire scenarios. 
 
This report includes a comprehensive description of the simulation and the 
project methodology to allow other users to replicate the results on other 
hardware and software platforms for comparative purposes.  Readers interested 
in the analysis and conclusions should refer directly to Sections 10 and 11. 
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2 Introduction 

Computational Fluid Dynamics (CFD) can be a useful design tool for certain 
classes of fire engineering problem.  The CFD program of industry choice is Fire 
Dynamics Simulator (FDS) by NIST1 because the program is available for free, it 
has a wide user base, it is well-supported and documented, it runs relatively 
quickly, and has been subjected to extensive validation6,18. 
 
A problem that arises from time-to-time in the application of FDS is excessive 
processing time.  Some simulations can take days or weeks to produce useful 
results even with refined (simplified) models.  This is problematic for real-world 
design projects which may require many simulations to be run in a relatively 
short time frame to meet project schedules. 
 
While many fire engineering companies have access to at least modest 
computational resources for FDS computation these may not be able to process 
FDS simulations in a useful timeframe for commercial projects.  Under these 
circumstances the use of contracted High Performance Computer (HPC) 
processing may provide the required computational resources to meet 
contractual time frames. 
 
There are numerous publications about FDS run-time using parallel 
processing2,3, a number of which make run-time comparisons between different 
hardware platforms.  However these are not directly applicable to the hardware 
platforms considered in this project.  Further, both the computer hardware, 
required for parallel processing software, and FDS continue to evolve.  A new 
comparative study of FDS performance is therefore warranted. 
 
This study is largely a book keeping exercise and is therefore of limited 
academic merit.  However fire engineering practitioners may find the results 
from over 8,000 core/hours of processing useful for assessing project 
computational requirements and reducing model simulation time. 
 
It should be noted at the outset that parallel processing of FDS models is not a 
panacea for improving model processing time.  Model refinements and the 
selection of an appropriate computational domain may be significantly more 
productive. 
 
While many models can be expected to run successful in a parallel processing 
environment with a reduction in run-time some will fail to run to completion – 
usually, but not always, associated with a weakness in the model.  Resolving 
parallel processing issues can be extremely difficult and time consuming. 
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2.1 Note of Appreciation 

FireNZE thanks New Zealand eScience Infrastructure (NeSI) and The Centre for 
eResearch,  University of Auckland for providing computer processing time on 
the HPC Pan cluster for this project. 
 
I would like to acknowledge the assistance provided by Mr Gene Soudlenkov 
(NeSI Support) for his prompt and helpful responses throughout this project, and 
the fire engineers and academics that took time to read the draft and provide 
critical comments and suggestions.  
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3 Purpose 

The purpose of this project is to compare the processing speed of FDS on an 
HPC platform against more modest computational resources. 
 
The evaluation will also consider the run time performance of MPI and OMP 
parallel processing strategies, aspects of model optimization for improvements 
in run-time, and other factors influencing processing performance and model 
results. 



 

 

Page 8 of 61 

 

4 Discussion - FDS Processing Speed 

4.1 Amdahl’s Law 

The parallel processing of FDS is generally described by Amdahl's law4 with a 
serialization percentage between about 20 and 60%5.  A direct consequence of 
this is that there are asymptotic limits to the maximum processing speed that 
can be achieved through increased computational parallelization as shown in 
Figure 1. 
 
 

 
Figure 1.  Amdahl’s Law for FDS 

 
The point of diminished returns for parallel processing of an FDS model typically 
occurs with allocation of between 8 and 16 processes.  Run-time reductions 
through the application of more than 16 processes to a single simulation can be 
expected to be minimal. 
 

4.2 MPI and OMP 

The FDS environment provides two methods of parallel processing called OMP 
(Open Multi-Processing, also referred to as OpenMP) and MPI (Message 
Passing Interface).  The two methods can be applied concurrently on the same 
FDS simulation, subject to hardware limitations. 
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OMP allows an FDS model with one or meshes to be run in parallel on a single 
CPU (Central Processing Unit) with one or more cores.  While OMP can be run 
concurrently on several CPU’s it cannot run the same process in parallel on 
different CPU’s.  Section 3.1.1 of the FDS Users Guide6 suggests that the 
maximum speed benefit of OMP will be about a factor of two. 
 
MPI allows an FDS model with more than one mesh to be run in parallel on 
more than one CPU on one or more computers.  MPI will almost always be more 
productive than OpenMP6, Sect. 3.1.3. 
 

4.3 Hyper-Threading 

A number of computer processors7 offer hyper-threading where a single physical 
processing core is allocated to several virtual cores through embedded firmware 
within the core.  The use of virtual multi-threading has been shown to be 
detrimental3 to the overall processing time of FDS. 
 
In this project virtual multi-threading was disabled so that computational 
processes were assigned to physical processing cores. 
 

4.4 Other Run-Time Improvement Strategies 

4.4.1 CPU Speed 

For a given processor architecture CPU clock speed is a key parameter for 
FDS run-time.  An FDS model running on a computer with a 4.4 GHz 
processor clock speed can be expected to complete significantly faster 
than on a 2.7 GHz computer.  The actual speed improvement is unlikely to 
be a linear function of processor speed due to other factors such as 
memory access time. 
 

4.4.2 Turbo and Over-clocking 

Some CPUs have the facility to modestly increase clock speed using turbo 
modes or over-clocking without radical modification to cooling.  While these 
modest speed improvements may be useful for improved processing 
performance they come at the expense of potential instability, voided 
warranties and a reduction in anticipated hardware service life.  Long term 
processor stability should be evaluated after application of clock speed 
enhancements using programs such as Prime958.    
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4.4.3 CPU Architecture 

CPU architecture is also important to FDS processing speed.  The 
bandwidth and size of processor cache memory (fast on-chip memory used 
for transfer of information between cores) can be expected to have a 
significant influence on the speed of parallel processing. 

 
Note that the CPU speed of servers (as typically used in HPC clusters) will 
generally be lower than for desktop computers, but with greater amounts of 
higher bandwidth cache.  This is a consequence of the typical usage, 
power efficiency and reliability required in a server environment. 

 

4.4.4 Network 

Network speed is an important consideration in parallel processing 
applications where processors on different nodes need shared access to 
dynamic data. 
 
Under MPI it is possible to tune network performance for improved data 
transfer between FDS processes on separate computers.  There are also a 
number of different protocols for data transfer across a network that offer 
different levels of network speed and security (cf. SSH and RSH9, rsync 
and mpisync).  Network tuning and data transfer protocols will not be 
specifically evaluated through this project. 

 

4.4.5 Processing Overheads 

Operating System (OS) and other application over-heads are relevant to 
FDS computational performance.  This project does not examine these 
aspects of the computational environment on FDS run-time performance.  
Other software under user control that is not necessary for FDS processing 
or project data collection was not run during FDS simulations. 
 
Similarly, the run-time priority (niceness in Linux parlance) assigned to 
FDS processes by the OS was retained at defaults.  Modest processing 
speed improvements can be realised by increasing the run time priority of 
FDS and associated software through the OS, but with a risk of introducing 
stability issues. 
 

4.5 Computational Domain Size 

Most FDS users will be aware that the computational time required for a 
simulation increases significantly with increasing resolution of the computational 
domain. 
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The computational burden for an FDS model will  increase by a factor of about 
16 when the computational domain basic cell dimension is halved (increasing 
the number of computational cells by a factor of 8).  This is a direct 
consequence of scaling in a three dimensional orthogonal Cartesian coordinate 
system (but note that FDS models can be configured in two dimensional and 
axially symmetrical cylindrical space)6, Sect. 6.3.2. 
 
The size of the computational domain must clearly encompass the fire cells of 
interest and will often extend to the entire building and beyond.  Subject to the 
symmetry of the problem it may be possible to use mirror boundary conditions to 
minimize the computational domain. 
 
Note:  In practical modelling it may be necessary to extend the computational 
domain beyond the building envelope to ensure vent flows are appropriately 
simulated.  Extending the model also allows rapid visual assessment of 
inadvertent leakage paths through the specified geometry. 
 

4.6 Grid Resolution 

Grid resolution is an important FDS parameter in determining how well a model 
will represent the fire phenomena of interest, and directly affects the size of the 
computational domain. 
 
Grid resolution is initially determined by rules of thumb: 
 

The design fire’s equivalent diameter should be spanned by between 10 
and 18 basic cubic cell dimensions. 

 
or through consideration of the parameter D*/dx, but should be confirmed 
through sensitivity analysis by examining metrics of interest with increasing 
resolution. 

 
FDS provides turbulence and scalar resolution metrics that can provide insight 
into the appropriateness of the grid resolution.  These metrics are seldom used 
in practise.  Recent releases of FDS (later than 6.2.0) have resulted in changes 
to the availability turbulence and scalar resolution10. 
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4.7 FDS Model Parameters 

There are many user-adjustable FDS parameters that can lead to dramatic 
changes in processing time for a given simulation.  These include the 
introduction of particles, radiation angular resolution, the specification of 
pressure zones and HVAC.  Those aspects of an FDS calculation that are not 
important to the validity of a simulation, or will not contribute useful output, 
should be dispensed with. 
 
For example the calculation of radiation from a relatively small fire in a very large 
space may have little influence on fire growth through compartment effects and 
have no measurable influence on tenability.  In this instance if FDS processing 
speed is an issue then the radiation solver could be disabled6, Sect. 1.4 (3). 
 
This study cannot reasonably assess the effects of every FDS parameter on 
model run-time.  Nor are we particularly interested in the appropriateness of 
model resolution, other than to ensure that model output is comparable between 
defined simulations on different computational platforms. 
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5 Project Methodology 

The project examines the run time of a relatively simple FDS model with 
different mesh configurations and resolution on three hardware platforms. 
 

• Each test case was run to completion using identical process allocations. 
 

• Run-time was measured and compared between platforms, allocated 
processes and the method and extent of applied parallel processing. 
 

• Model output was compared between platforms, allocated processes and 
the method and extent of applied parallel processing. 
 

• Run-time and model output variance was examined. 
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6 Computational Platforms 

The following hardware platforms were selected for this project. 
 

• HPC Pan Cluster 
 

• Beowulf Linux Cluster 
 

• Windows Workstation 
 

6.1 HPC Pan Cluster 

The HPC Pan cluster11 is a research and commercial resource provided by The 
Centre for eResearch, University of Auckland through New Zealand eScience 
Infrastructure (NeSI)12. 
 
The Pan cluster is capable of concurrently running hundreds of FDS models with 
significant parallelization (> 6,000 physical cores, but subject to allocated 
resources and concurrent use by other subscribers). 
 
The Pan cluster includes a variety of Intel architecture processors running at 
between 1.87 and 2.8 GHz.  It has significant RAM resources and is networked 
at 40 Gb/s.  Test cases run on the Pan cluster were run in Node Groups b, c, d 
and e with Intel Xeon E5-2680 cores running at 2.7 GHz. The processors run 
Red Hat Enterprise Linux 6.3 OS. 
 
The cluster is organised into node groups of identical architecture nodes.  The 
resources of nodes vary from group to group which may result in changes to the 
resources allocated to a particular simulation, subject to node group allocations 
in the submission batch file. 
 

6.2 Beowulf Cluster 

A Beowulf13 cluster was built by FireNZE as a low-cost dedicated solution for fast 
processing of a limited number of FDS models with limited parallelization (up to 
16 cores per model).   
 
The cluster comprises four Intel I7 4097K quad core processors, each with a 
clock speed of 4.4 GHz, 16 GB RAM and solid state hard drives, connected with 
a dedicated 1 Gb Ethernet LAN.  The machines run under Linux Ubuntu 14.04 
64 bit OS. 
 

6.3 Windows Workstation 

This is a typical personal computing platform that exceeds the minimum 
recommended hardware specifications for FDS processing6, Sect. 2.2 et seq..  The 
platform has a single CPU and cannot run FDS in an MPI parallel environment.  
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Effective concurrent modelling capability is limited to the allocation of four cores 
under OMP. 
 
The platform comprises an Intel I7 3770 quad core processor running at 3.9 
GHz with 16 GB RAM.  The machine runs under a Windows 7 64 bit OS. 
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7 Project FDS Model 

The test model used for this project, while representative of a typical FDS 
analysis of a compartment fire, is entirely fictional.  The FDS input file is listed in 
Appendix A. 
 

7.1 FDS Version 

The model was processed on all hardware platforms using FDS Version 6.2.0, 
Compilation Date: Sat, 11 Apr 2015, SVN Revision: 22343.  This was the most 
recent release of FDS at the time this project was initiated. 
 

7.1.1 Discussion 

As a general rule practitioners should use the most recent release of FDS 
when commencing a new project and, in my opinion, regulators are right to 
insist upon this. 
 
The reasons for upgrading include improvements in functionality and 
coding, enhancements to the calculation of the underlying physics (noting 
that the physics do not change) and the provision of software support.   
Version changes are fully documented in the FDS release notes that 
accompany the software and all releases are subjected to validation18 by 
NIST. 
 
There was a general fire industry reluctance to upgrade from FDS Version 
5.6 to Version 6.0 because of increased processing burden (the very 
subject of this study).  It is apparent from NIST’s change management 
process and the FDS User’s Manual6 that the development team were 
cognisant of this issue.  Clearly they considered that the upgrade 
enhancements more than compensated for the increased run-time. 
 
Adoption of the latest release of FDS also provides the impetus for 
continued development and support of the program.     

 

7.2 Geometry 

All simulations are based on an 8 m wide x 16 m long x 4 m high compartment 
model with two open vertical vents, each 2 m high x 0.75 m wide as shown in 
Figure 2. 
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Figure 2. Test Model (8 mesh, 0.125 m cubic cell dimension) 
 

7.3 Computational Domain 

The model computational domain was established using a single-sized cubic cell 
(mesh stretching was not applied).  The cell basic dimension was varied as 
shown in Table 1.  For brevity these are referred to as the 32K, 260K and 2M 
computational domains throughout this report. 
 
The range of computational domain sizes tested in this project are considered to 
be small to moderate.  Large computational domains might extend to tens of 
millions of cells. 
 
 

Cell Size Computational Domain Abbreviation 
(m) (Number of Cells in Model)  
0.25 32,768 32K 
0.125 262,144 260K 

0.0625 2,097,152 2M 

 
Table 1.  Model Computational Domains 
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Initial experiments with a cell size of 0.125 m and a single mesh required about 
three hours of processing for a 180 second simulation on the Windows 
Workstation.   This was considered to be an adequate duration to ensure that 
FDS initialization and wrap-up processes were not a significant contribution to 
the total computation time.  The single process 2M case was expected to run to 
completion in approximately 72 hours.  
 
The design fire was offset from the centre of the compartment to ensure that 
remained completely bound within a single mesh for the multiple mesh test 
cases.  Compartment dimensions were selected to ensure that the design fire 
plume was largely contained within a single mesh in the multiple mesh test 
cases.  The rationale for this is to reduce high levels of model activity at inter-
mesh boundaries.  This is considered to be good practise for real world 
modelling problems6, Sect. 6.3.4. 
 
The compartment ventilation area was sized to ensure that the design fire 
remained fuel-controlled throughout the 180 second simulation, but with 
significant hot upper layer development to ensure well-distributed fire 
phenomena for defined meshes. 
 

7.4 Meshes 

Multiple meshes are required for the application of MPI parallel processing. 
 
Test models were evaluated with 1, 2, 4, 8 and 16 meshes.  Each mesh in any 
particular test case contained an identical number of computational cells.  The 
number of assigned MPI processes for a test case was equal to the number of 
meshes. 

 
Mesh cell dimensions were established as factors of 2, 3 and 5 to ensure 
optimized processing6, Sect. 6.3.1.  Note that this arrangement does not necessarily 
provide for optimum distribution of the computational burden between meshes, 
particularly early in a simulation. 
 
Mesh priority for abutting meshes of the same resolution is understood to have 
no affect run-time under recent FDS releases14.  The general advice on this 
issue is that finer resolution meshes should have a higher priority (be listed 
earlier in the FDS input file) than courser meshes, otherwise mesh priority is not 
important.  Mesh priority in this project was assigned on the basis of the 
anticipated mesh of most fire activity to the least activity (old habits die-hard). 
 

7.5 Design Fire Specification 

The design fire was specified with a fast αt2 growth rate, a plan area of 1.5 m2, 
and a maximum Heat Release Rate Per Unit Area (HRRPUA) of 1,000 kW/m2.  
The model was run to simulate 180 seconds with a final heat release rate of 
1.55 MW. 
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The design fire was specified in accordance with C/VM215 requirements for 
occupancies with less than 3 m of storage height.  Combustion yields were 
established in accordance with C/VM2 using defined chemistry in the FDS single 
stage combustion model. 
 

7.6 FDS Parameters 

The initial FDS flow field6, Sect. 6.4.1 was defined without noise (&MISC 
NOISE=.FALSE.) on the misunderstanding that the pseudo-random flow-field 
noise seed was not constant and would result in variations in results and run 
time for a particular model.  Subsequent analysis showed that the seed is 
constant resulting in consistent model output and no contribution to variations in 
model processing time.  In real world projects this parameter is .TRUE. by 
default to prevent the development of a perfectly symmetrical flow field in a 
symmetrical domain – fire is, after all, a stochastic process. 
 
With the exception of NOISE=.FALSE., FDS simulation parameters were run at 
default values. 

 

7.7 Model Output 

In order to exercise computer platform data storage a number of typical FDS 
output parameters have been defined in the model as follows: 
 

• Temperature 
 

• Visibility 
 

• Velocity 
 

• FEDco 
 

• Radiation 
 

• Upper Layer Parameters 
 

• Turbulence Resolution 
 

• Scalar Resolution 
 
These measurements are to be recorded as plot files, slice files, boundary files, 
point and linear measurements (as appropriate). 
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Restart files (&DUMP RESTART = 30) were also recorded every 30 simulation 
seconds.  Restart information is not essential for this particular project as the 
model runs to completion is a reasonable timeframe and individual results are 
not project critical.  Although the restart files are relatively large and exercise 
disk access they are not an appreciable contributor to total run-time. 
 
Restarts are recommended for medium to large FDS simulations for commercial 
purposes to minimize the extent of reprocessing in the event of computer 
outage.  They can also provide useful information for processing computational 
errors (such as numerical instability) and allow some aspects of the simulation to 
be adjusted through the course of a calculation. 
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8 Project Test Cases 

The project test cases are described in Tables 2 and 3.  Each test case was run 
on each computer platform with the proviso that the physical processing cores 
were not over-subscribed (not more than one computational process was 
allocated to a single physical core). 
 
 
Model Number Meshes MPI Processes OMP Processes Cores Cell Size 

F20-1-1 1 1 1 1 2.0 
F10-1-1 1 1 1 1 0.125 
F05-1-1 1 1 1 1 0.5 

 
Table 2.  Mesh Resolution Run-Time Evaluation 

 
 
The mesh resolution tests in Table 2 provide a comparative measure of single 
process computational speed.  These provide the single-process bench-mark for 
the parallel processing cases. 
 
The applied cell sizes seeks to confirm the 16 times increase in processing time 
with a halving of the basic computational cell dimension, and provides a metric 
for estimating the run-time of other models. 

 
 

Model Number Meshes MPI Processes OMP Processes Cores 
Mxx-1-2 1 1 2 2 
Mxx-1-4 1 1 4 4 
Mxx-1-8 1 1 8 4* 
Mxx-2-1 2 2 1 2 
Mxx-2-2 2 2 2 4 
Mxx-2-4 2 2 4 8 
Mxx-2-8 2 2 8 8* 
Mxx-4-1 4 4 1 4 
Mxx-4-2 4 4 2 8 
Mxx-4-4 4 4 4 16 
Mxx-4-8 4 4 8 16* 
Mxx-8-1 8 8 1 8 
Mxx-8-2 8 8 2 16 
Mxx-8-4 8 8 4 16* 
Mxx-8-8 8 8 8 16* 
Mxx-6-1 16 16 1 16 

Mxx-16-2 16 16 2 32* 
Mxx-16-4 16 16 4 64* 
Mxx-16-8 16 16 8 128* 

 
Notes: * Cores may be over-subscribed subject to hardware. 

xx replaced with mesh resolution and hardware platform identifier 
 

Table 3.  MPI and OMP Run-Time Evaluation 
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The MPI and OMP tests are designed to comparatively evaluate parallel 
processing configurations within and between hardware platforms. 
 
Two further sets of 100 simulations were run to measure the simulation time 
variability for a given model on the Beowulf Linux cluster.  This also provided 
insight into OS overheads and processing bottlenecks on this hardware 
platform. 
 
The model set for the project comprised 46 test model simulations, a further 
200 simulations completed to evaluate run time variation, and a number of 
developmental simulations.  The total processing time for the project across all 
platforms exceeded 8,000 core hours. 
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9 Project Implementation 

The base FDS test model was prepared (refer to Appendix A) and tested. 
 
The base model was reconfigured for multiple meshes and resolutions and run 
under different process allocations on each of the three hardware platforms over 
a period of 16 weeks. 
 
A template script file was provided by NeSI for running the test cases on the 
HPC platform under SLURM16 (Simple Linux Utility for Resource Management). 
 
A further set of analyses was completed on the Linux cluster to examine test 
case run-time variability.  Two models were each run several hundred times 
under a Linux shell script that extracted model run-time and DEVICE activation 
time as a measure of variability. 
 

9.1 Post Simulation Processing 

Post-simulation processing of output data, as might be required for a fire 
engineering design, is outside of the scope for this project other than for 
comparing model results between hardware platforms. 
 
The size of the FDS output files for the refined mesh models was substantial, 
extending to approximately 4 GB for the 2M models.  Downloading the FDS 
output files from the HPC Pan cluster for local analysis proved to be a significant 
burden at ADSL speeds (measured at typically 0.23 MB/s).  Even with VDSL 
and an assumed increase in download speed by a factor of ten to 2.3 MB/s, the 
time for FDS model download can be an appreciable fraction of processing time 
- perhaps as much as 6%. 
 
In order to reduce the download burden the entire FDS output of only four test 
cases were downloaded from the HPC Pan cluster in their entirety.  All aspects 
of these complete datasets were compared with other platform test cases to 
validate the model on each platform. 
 
For all other test cases downloads were limited to the following subset of FDS  
and SLURM output  files. 
 

FDS Model 
Device File 
HRR File 
Model Output File 
 
SLURM Runtime Script 
SLURM Error File 
SLURM Output File 
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This minimal download was sufficient to examine test case run-time, compare 
model heat release rate history and device activation times, confirm allocated 
computational resources and ensure that each test case had run to completion 
without error. 
 
Test case run-time and device activation measurements were subject to 
comparative analysis across platforms and between applied computational 
resources; the results summarised, considered and reported. 
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10 Results and Analysis 

The FDS results of the simulated models extends to 100’s of GB on three 
hardware platforms.  This project is primarily concerned with simulation run time 
so the bulk of this information (which would be essential to understanding the 
fire performance of the model) is redundant and is not included in this report. 
 
Run-time data has been reduced to comparative graphics for ease of visual 
interpretation.  The reader is cautioned to note Y axis scales when comparing    
graphics.  
 
The data is necessarily sparse because simulation of all possible parallel 
processing recourse allocations would be a formidable, expensive and time-
consuming task, even with limited computational domains. 
 
The bulk of the experimental data is presented as discrete MPI and OMP 
resource allocations plotted against run-time.  Trend lines have not been 
incorporated in the graphs because the data is generally sparse and because 
these do not accurately portray discrete events. 
 

10.1 Single Mesh with OMP 

Figures 2 to 4 show test model run-time on the three (Windows, Pan and 
Beowulf) hardware platforms with increasing OMP parallelization and increasing 
mesh resolution (the progressively larger computational domains in Table 1). 
 
The Pan platform provided an anomalous (extended) run-time for the OMP = 2 
case on the 32K computational domain (refer to Figure 2).  The cause could not 
be identified and the model could not be readily re-run due to limitations of 
project processing allocation.  
 

10.1.1 Processor Speed 

It is immediately evident from Figures 2 to 4 that increasing processor 
speed translates directly to decreased model run-time. 
 
For the OMP Processors = 1 case there is no parallel processing and the 
variation of run time between platforms decreases with increasing 
processor speed.  This is independent of the size of the computational 
domain.  The Beowulf platform (4.4 GHz) was 21% faster than the 
Windows platform (3.9 GHz), and 47% faster than the Pan platform 
(2.7 GHz). 

 
 The relationship between processor speed and run time is not linear.  This 

is considered to be a consequence of differences in the hardware and 
software configurations of the three platforms. 
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10.1.2 OMP Parallelization 

 The extent of this analysis on the Beowulf and Windows platform was 
limited to 4 OMP processes by the available processor cores. 
 
Application of increasing OMP parallelization (up to 8 OMP processes) 
resulted in reduced model run-time, but with decreasing returns.  This is in 
general accordance with Amdahl ’s Law. 
 
The reduction in run-time with increasing OMP parallelization improved 
with increasing computational domain size.  This is attributed to a relative 
increase in model calculation time verses parallelization burden.       
 
 The application of more than 8 OMP processors on the Pan platform 
resulted in an increase in model run-time.  This is attributed to the 
serialization percentage of the model and the increasing parallelization 
burden. 

 
 The Pan cluster provided the greatest percentage reduction in run-time 

through OMP parallelization with 8 OMP processes on the 2M 
computational domain (Figure 4).  The run-time improvement was 54% 
reducing from 89.9 hours to 39.9 hours.  The maximum run-time reduction 
with OMP parallelization was typically less than 50% across all model 
resolutions and hardware platforms.      

 
The reason why the Pan platform is more efficient in the application of 
OMP than the Windows or Beowulf platforms is attributed to its core cache 
size and bandwidth.  The Pan Xeon processors have a 20 MB cache with 
a memory bandwidth of 51.2 GB/s compared with Intel I7 processors with 
8 MB cache and 25.6 GB/s bandwidth. 

 
With the application of OMP the Beowulf platform provided the best 
run-time, being approximately 30% faster than the Windows and Pan 
platforms. 
 

10.1.3 Run-Time and Computational Domain Size 

As the computational domain size increases by a factor of eight (the basic 
cell dimension is halved progressing from Figure 2 to 3 and from Figure 3 
to 4) the model run-time increases by a factor of approximately 16.  This 
result applies to all platforms and is independent of OMP or MPI 
parallelization. 
 
Model run-time can therefore be predicted by initially running a low 
resolution (and relatively fast) simulation and scaling accordingly.  Initial 
low resolution modelling also provides a useful check on aspects of FDS 
model functionality, including device triggered events, design fire growth 
rate, model leakage and stability and is therefore recommended practise.    
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Figure 2.  Simulation Time with Increasing OMP Parallelization 

1 MPI Process (1 Mesh), 32K Computational Domain  
 
 

 

 
Figure 3.  Simulation Time with Increasing OMP Parallelization 

1 MPI Process (1 Mesh), 260K Computational Domain  
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Figure 4.  Simulation Time with Increasing OMP Parallelization 

1 MPI Process (1 Mesh), 2M Computational Domain  
 

10.2 MPI (Multi-Mesh) 

Figures 5 to 7 show the model run-time difference between the Pan and Beowulf 
hardware platforms with increasing MPI parallelization and increasing mesh 
resolution (the progressively larger computational domains in Table 1).   
 
Note that MPI cannot be applied on the Windows platform because it has a 
single 4-core processor.  Although multiple mesh models can be run on the 
Windows platform these cannot be invoked with MPI parallelization. 
 

10.2.1 Processor Speed 

Processor speed remains a significant factor for reduced run-time,   
particularly with low numbers of applied MPI resources and larger 
computational domains. 
 

10.2.2 MPI Parallelization 

Run-time decreases (improves) with increasing MPI parallelization on both 
hardware platforms, but with decreasing returns.  This is an expected result 
in general accordance with Amdahl ’s law. 
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For larger computational domains the Beowulf platform was fractionally 
faster than the Pan platform with 16 MPI processes. 
 
Both the Beowulf and Pan platforms were significantly faster than the 
Windows platform under OMP with at least an 80% reduction 
(improvement) in processing time (38.7 hours reduced to 6.6 hours for the 
2M model). 
 
For a given number of cores MPI parallelization resulted in faster run-times 
than OMP (compare Figures 2 and 5, Figures 3 and 6 and Figures 4 
and 7).  For example the run-time improvement of the 2M model on the 
Pan platform from 2 to 4 OMP processes (Figure 4) is 26%, while the run-
time improvement from 2 to 4 MPI processes (Figure 7) is 46%. 
 
The rate at which MPI parallelization reduces run-time is significantly 
greater on the Pan platform, to the extent that the speed advantage of the 
Beowulf platform is negated after the application of 4 MPI processes on the 
32K computational domain model and 16 MPI processes on the 260K and 
2M cell models. 
 
This is attributed to the cache bandwidth described previously and the 
network speed of the Pan platform (40 Gb/s) compared to the relatively 
slow 1 Gb/s of the Beowulf platform. 
 
Examination of the Beowulf Ethernet network load during MPI model 
processing showed a average data transfer rates of approximately 30 MB/s 
(concurrent send and receive) between computer nodes.  The time 
required for data transfer on the Beowulf network is therefore a significant 
proportion of the total time that might otherwise be available for model 
calculation.  Approximately 25% of model processing time is required for 
data transfer between nodes (30 MB/sduplex  x  8 b/B / 1 Gb/s = 0.24).  
Assuming that the Pan platform requires similar data transfer rates 
between nodes for MPI processing then the network overhead is less than 
1%. 
 
This identifies that the 1 Gb/s Ethernet throughput is a significant 
deficiency with the Beowulf hardware for MPI processing.  While hardware 
improvements to the network such as Infiniband or optical LAN networking 
would be expected to improve the Beowulf MPI processing time these are 
relatively expensive additions to what is a budget FDS hardware platform. 
 
An alternative approach for MPI processing speed improvement on the 
Beowulf platform is improved network data transfer efficiency and protocols 
(see Section 4.4.2 above).  Literature17 suggests that RSH may provide at 
least a 20% improvement over SSH on this secure platform. 
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The Beowulf platform is currently fully utilized processing commercial FDS 
models so experimenting with network protocols could not be completed in 
conjunction with this project (attempting to fix what isn’t broken can result 
in really broken with extensive, unproductive down-time).   
   
 
  

 

Figure 5.  Simulation Time with Increasing MPI Parallelization 
1 OMP Process, 32K Computational Domain 
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Figure 6.  Simulation Time with Increasing OMP Parallelization 
1 OMP Process, 260K Computational Domain 

 

Figure 7.  Simulation Time with Increasing MPI Parallelization 
1 OMP Process, 2M Computational Domain  
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10.3 MPI and OMP 

In preparing this report some time was spent agonizing over the most 
appropriate visual representation of the application of OMP and MPI.  While 
three-dimensional graphics allow clear visualization of optimum platform 
performance, they do not readily show comparative performance between 
platforms.  Also coloured information does not transfer readily to monochrome 
which is often necessary for publication.  
 
For brevity this Section contains three-dimensional representations of platform 
performance with perspective and colour.  Detailed comparative information has 
been included in Appendix D.  Note that the graphics in this Section includes 
interpolated data between measured computational platform limits.   
 
Figures 8 to 13 show the test model run-time on either the Pan or Beowulf 
platforms with both OMP and MPI parallelization and increasing mesh 
resolution.  Bright yellow cells are used to identify the minimum run-time 
condition on a graph.  The platform results for each mesh resolution are 
produced on a single page with appropriate scaling to facilitate visual cross-
platform comparisons. 
 
A question that one might ask is, If MPI consistently produces improved run-
times than OMP, then why apply OMP?  The answer is that some models are 
not appropriately configured for MPI (insufficient meshes or unbalanced 
computational loads between meshes), it may not be possible to apply available  
hardware resources as MPI processes, and the application of both MPI and 
limited OMP resources can be expected to reduced model run-times. 
 

10.3.1 Platform Performance 

The Pan platform out-performed the Beowulf platform for the 32K and 
260K models with run-time reductions of 38% (71 seconds) and 8% 
(2.4 minutes) respectively, but was slower for the 2M model by 11% 
(0.8 hours). 
 
The Pan platform required twice the computational resource of the Beowulf 
platform to achieve these results, while the differences in processing speed 
are arguably insignificant in the context of a real world fire engineering 
problems. 

 
The minimum run-time of the test model on the Pan cluster (for each 
computational domain)  was with a concurrent allocation of 4 OMP and 
8 MPI processes.  The minimum run-time of the test model was achieved 
on the Beowulf cluster with 16 MPI processes. 
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10.4 Run-Time Improvement 

With optimum application of both MPI and OMP the best run-time improvements 
achieved (by platform) were: 
 
 Windows: 33.6% with 4 OMP processes 
  

Beowulf: 84.5% with 16 MPI processes 
 
Pan:  91.9% with 8 MPI and 4 OMP processes 
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Figure 8.  Beowulf Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run-time: 185 s with 16 MPI 

 
 

 
 

Figure 9.  Pan Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run-
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Figure 9.  Pan Platform Simulation Time with OMP and MPI Parallelization,
32K Computational Domain 

-time: 114 s with 8 MPI and 4 OMP Processes

2
3

4

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

OMP Processes

MPI  Processes

5
6

7
8

9
10

11
12

13
14

15
16

8
9

10
11

12
13

14
15

16

OMP Processes

 
Figure 8.  Beowulf Platform Simulation Time with OMP and MPI Parallelization, 
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Figure 10.  Beowulf Platform Simulation Time with OMP and MPI 

(Minimum Run-time: 
 
 

 
Figure 11.  Pan Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run-
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Figure 11.  Pan Platform Simulation Time with OMP and MPI Parallelization,
260K Computational Domain. 
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Figure 12.  Beowulf Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run
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Figure 12.  Beowulf Platform Simulation Time with OMP and MPI Parallelization,

2M Computational Domain. 
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Figure 13.  Pan Platform Simulation Time with OMP and MPI Parallelization,
2M Computational Domain. 
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10.5 Economy 

10.5.1 Cost 

The cost of FDS model processing is usually an insignificant fraction of the 
cost of a fire engineering project, and is secondary to reducing run-time to 
achieve project requirements. 
 
Computer time is usually billed on the basis of expended core/hours with a 
commercial rate of less than US$0.20 per core hour available at the time of 
writing.  
 
With efficient allocation of MPI and OMP parallelization the 2M test model 
was processed on the Beowulf and Pan platforms in less than 
250 core/hours. 

 

10.5.2 Efficiency 

With the extensive processing resources available on the Pan cluster a 
large number of FDS models can be run concurrently, each with optimum 
parallelization.  However in fire engineering applications it may not be 
possible to process a large number of models concurrently as the results of 
earlier models often determine parameters for later models. 
 
While FDS model run-time is a critical path component of a fire engineering 
project it is preceded by model development and followed by analysis and 
reporting of results.  Staged modelling may be more productive as it allows 
for concurrent model development, analysis, reporting and simulation. 
 
The Pan cluster has the computational capacity to run hundreds of FDS 
models concurrently, each with optimum parallelization.  Concurrent 
modelling on this platform will provide the fastest processing solution 
where a large number of simulations are required.     
 
The Beowulf cluster has limited parallel processing resources.  While the 
fastest individual model run-time is achieved by committing all 16 
processes to MPI on a single model, the system can be used more 
efficiently by running two (or more) models in parallel, each with less than 
the optimum MPI processes for minimum run-time. 
 
Table 4 summarises the overall processing time benefit of concurrent 
modelling on the Beowulf cluster for the 2M model. 
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Number of 
Concurrent 
Models 

MPI 
Processes per 
Model 

Total 
Processing 
Time (hours) 

Improvement 
over Serial 
Processing 

1 16 6.7 0% 
2 8 11.2 17% 
4 4 19.7 26% 
8 2 26.6 50% 

 
Table 4.  Concurrent Modelling Efficiency and Run-Time 

(Beowulf cluster, 2M model) 
 

10.6 Variation in MPI Processing Time 

The key measurement from all of the models run for this project was run-time as 
reported in the FDS .out file.  These individual measurements do not provide an 
understanding the variability of run-time for any particular model.  Some 
variability is expected due to changes in OS demands over time, network 
availability and processing latency. 
 
In order to examine run-time variability two models were run 100 times on the 
Beowulf cluster with the resulting data summarised as probability distributions.  
The task was automated by a shell script file (Appendix C) which extracted and 
compiled individual model run-times before overwriting the FDS output files. 
 
While it would have been instructive to complete similar tests on the Pan cluster 
this could not be completed within the allocated computing resources provided 
for the project. 
 
The two fastest test models from the 32K and 260K computational domains 
were used in this test, each with 16 MPI processes.  The 2M model was not 
tested because processing time would have been excessive (estimated to be 
600 hours).  
 
Summary statistics are presented in Table 5 and the associated probability plots 
are shown in Figures 14 and 15. 
 
 

Computational Domain Mean Run-Time Standard Deviation 
 (s) (s) 

32K 190.6 2.15 
260K 1,786.9 7.69 

 
Table 5.  Summary Run-Time Statistics 

 
The probability plots show that MPI run-time on the Beowulf cluster is Normally 
Distributed with little variance.  It follows that the individual run-time data 
measurements are likely to be good estimates of typical run-time performance. 
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Run-time can be expected to be within +/- 3% of the mean for 99.7% of 
simulations (3 Sigma limits).  
 
 

 
Figure 14.  32K Domain Run-Time Probability Plot 

 
 

 
Figure 15.  260K Domain Run-Time Probability Plot 
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10.7 Variation in FDS Output 

Ideally, a given model with a given resolution will produce identical FDS outputs 
on different platforms and/or with different mesh configurations.  However mesh 
boundary effects, the finite resolution of digital computer number systems, 
differences in numeric algorithms (in firmware or software) and the cumulative 
effects of rounding over large numbers of calculations are expected to cause 
variation in FDS output. 
 
 

 
Typical FDS DEVICE outputs (a point smoke detector and two thermal LINKS) 
were used as metrics to compare identical FDS models run on different 
hardware platforms.  Refer to the FDS model at Appendix A for DEVICE 
characteristics and locations.  
 
The measured data and associated summaries are contained in Appendix E. 
 
Changes in the computational domain cell size are expected to change the 
output metrics.  This is a direct consequence of the spatial averaging that occurs 
as computational domain cell dimensions are changed.  This aspect of model 
performance would normally be the subject of sensitivity analysis when selecting 
the computational cell size (Section 4.6 above). 
 
It was also expected that a smaller computational domain cell size should 
generally produce a ‘better’ simulation.  It follows that DEVICE activation in the 
2M model will be a better representation of the performance of a real device 
than either the 260K or 32K models. 
 

10.7.1 FDS Verification 

While FDS is subjected to comprehensive testing prior to the release of 
any update this cannot possibly account for every possible user 
environment including hardware, operating system and compiler.  It follows 
that an FDS installation on any particular computer platform should be 
subjected to verification.  The reasons for this are explained in detail in the 
FDS Verification Guide19 which also provides an installation verification test 
suite in Appendix B, Table B1.  This project is primarily about FDS run-time 
hence the veracity of the FDS output has not been subject to verification on 
the Pan Cluster.  One might reasonably expect that verification should be 
completed on every FDS installation, but anecdotally verification is seldom 
completed.       

 

10.7.2 Findings 

A given model, platform and parallelization produced identical results for all 
recorded FDS output variables.  This held throughout the hundreds of run-
time variation tests described in Section 10.5.   
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A given model run on different platforms and/or with different parallelization 
produced changes in the FDS output variables.   
 
On a given hardware platform the 32K metrics were larger (corresponding 
to delayed activation) compared with the 260K and 2M metrics.  This is 
considered to be a direct consequence of spatial averaging. 
 
Variation of the metrics tended to increase with increasing computational 
domain size (with the exception on the Pan Cluster 2M models).  This is 
considered to be due to the increased number of calculations required to 
process a larger computational domain, and the cumulative effects of finite 
precision arithmetic. 
 
The maximum percentage variation was greater than +/- 5.6% about the of 
the mid-range on the Pan Cluster with the 260K model. 
 

10.7.3 Discussion 

A fire engineering design that hinges on just a few percent of DEVICE 
activation (or some other parameter of interest) for success should be 
viewed with a certain amount of scepticism and critically assessed for other 
safety factors in the design and sensitivity.  FDS is, after all, a simplified 
model of the situation under consideration.   
 
Extensive FDS validation18 suggests  that an appropriate model can be 
expected to produce results within useful bounds of a fire experiment.  
However fire is a stochastic process and even laboratory experiments 
under tightly controlled conditions can produce unexpected results. 
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11 Conclusions 

 
The following conclusions are drawn from the body of this report.  It should be 
apparent from the body of this report that these are specific to the hardware, the 
model and the simulation options selected. 
 

11.1 Commercial HPC 

Commercial HPC is a viable resource for running FDS when a large number of 
concurrent simulations must be completed in a relatively short time frame to 
meet project deadlines. 

 
• Data download times can be an appreciable from commercial providers.  

Transfer of data using physical media (such as an external hard drive) 
may be warranted. 
 

• The use of HPC resources will not significantly decrease the time to 
complete a single simulation.  HPC cannot reduce the critical path for 
projects that require models to be developed serially (for example, where 
the output of earlier models provides input for later models). 

 
• More modest computational platforms can provide better run-time 

performance than HPC resources for model development and concurrent 
processing of a limited number of models. 
 

• FDS verification results should be available for any HPC platform (and 
more generally for any FDS installation).  

 

11.2 Parallelization 

Parallelization with MPI and OMP will reduce simulation run-time. 
 

• The extent of run-time reduction is both model and hardware specific.  In 
this project optimum use of parallel processing resources produced run-
time improvements of over 90%. 

 
• MPI was demonstrated to be more productive than OMP.  The maximum 

run-time gain from OMP was approximately 50%.  Allocation of more than 
about 8 OMP processes may be counter-productive. 

 
• With modest computational platforms improvements in the overall project 

FDS processing time may be achieved by concurrent modelling with less 
than optimal parallelization applied to individual models. 
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11.3 Computational Domain 

Simulation run-time increases with increasing computational domain size.  
Halving the basic cell dimension will increase run-time by a factor of about 16.  
Models should therefore use the minimum mesh refinement consistent with 
sensitivity analysis of variables to interest for optimum run-time. 
 
Low resolution run times provide a reasonable estimate of higher resolution run 
times through scaling. 
 

11.4 Run-Time Variability 

Run-time for any particular hardware platform and model is expected to be 
Normally distributed with low variance. 
 

11.5 FDS Model Output Variability 

A given model on a given platform with a particular assignment of parallelization 
will produce identical FDS outputs with successive simulations. 
 
Increased parallelization and the specification of additional meshes can lead to 
increases in FDS model output variability.  The extent of variability is expected 
to be more pronounced with increased model resolution. 
 
Subject to the provision of other safety factors, model sensitivity analysis to 
parallelization may be warranted when the success of a fire engineering design 
hinges on results within a few percent of failure thresholds. 
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Appendix A FDS Test Model 

The following text describes the proposed FDS input file.  Mesh allocations and 
basic cell dimensions are to be adjusted as appropriate to each test case shown 
in Tables 1 and 2. 
 
 

&HEAD CHID='HPC'/ 
&TIME T_END=180.0/ 
&DUMP RENDER_FILE='HPC.ge1', COLUMN_DUMP_LIMIT=.TRUE., DT_PL3D=30.0, 
DT_RESTART=30.0, WRITE_XYZ=.TRUE./ 
&MISC NOISE=.FALSE./ 
 
&MESH ID='MESH', IJK=64,128,32, XB=0.0,8.0,0.0,16.0,0.0,4.0/ 
 
&REAC ID='CVM2', 
      FYI='CVM2 Ver4', 
      FUEL='REAC_FUEL', 
      C=1.0, 
      H=2.0, 
      O=0.5, 
      CO_YIELD=0.04, 
      SOOT_YIELD=0.07, 
      HEAT_OF_COMBUSTION=2.0E4/ 
 
&PROP ID='Cleary Photoelectric P2', 
      QUANTITY='CHAMBER OBSCURATION', 
      ACTIVATION_OBSCURATION=9.7, 
      ALPHA_E=1.8, 
      BETA_E=-0.8, 
      ALPHA_C=0.8, 
      BETA_C=-0.8/ 
 
&PROP ID='Default', 
      QUANTITY='SPRINKLER LINK TEMPERATURE', 
      ACTIVATION_TEMPERATURE=68.0, 
      RTI=135.0, 
      C_FACTOR=0.85/ 
 
&DEVC ID='SD', PROP_ID='Cleary Photoelectric P2', XYZ=5.0,3.0,3.75/ 
&DEVC ID='FEDco', QUANTITY='FED', XYZ=4.25,13.0,2.0/ 
&DEVC ID='FEDco01', QUANTITY='FED', XYZ=4.25,5.0,2.0/ 
&DEVC ID='FEDrad', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=4.25,13.0,2.0, 

ORIENTATION=0.0,0.0,1.0/ 
&DEVC ID='FEDrad01', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=4.25,5.0,2.0, 

ORIENTATION=0.0,0.0,1.0/ 
&DEVC ID='FEDtemp', QUANTITY='TEMPERATURE', XYZ=4.25,13.0,0.0/ 
&DEVC ID='FEDtemp01', QUANTITY='TEMPERATURE', XYZ=4.25,5.0,0.0/ 
&DEVC ID='LAYER->HEIGHT', QUANTITY='LAYER HEIGHT', 

XB=4.25,4.25,13.0,13.0,0.0,4.0/ 
&DEVC ID='LAYER->LTEMP', QUANTITY='LOWER TEMPERATURE', 

XB=4.25,4.25,13.0,13.0,0.0,4.0/ 
&DEVC ID='LAYER->UTEMP', QUANTITY='UPPER TEMPERATURE', 
 XB=4.25,4.25,13.0,13.0,0.0,4.0/ 
&DEVC ID='LAYER01->HEIGHT', QUANTITY='LAYER HEIGHT', 

XB=4.25,4.25,5.0,5.0,0.0,4.0/ 
&DEVC ID='LAYER01->LTEMP', QUANTITY='LOWER TEMPERATURE', 

XB=4.25,4.25,5.0,5.0,0.0,4.0/ 
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&DEVC ID='LAYER01->UTEMP', QUANTITY='UPPER TEMPERATURE', 
XB=4.25,4.25,5.0,5.0,0.0,4.0/ 

&DEVC ID='SLINK', PROP_ID='Default', XYZ=1.75,10.0,3.75/ 
&DEVC ID='SLINK01', PROP_ID='Default', XYZ=5.0,6.75,3.75/ 
 
&SURF ID='FIRE1', 
      FYI='Fire', 
      COLOR='RED', 
      HRRPUA=1.333E4, 
      TAU_Q=-655.0/ 
 
&OBST XB=4.5,5.5,9.25,10.75,0.0,0.5, PERMIT_HOLE=.FALSE., 

THICKEN=.TRUE.,SURF_IDS='FIRE1','INERT','INERT'/ Obstruction 
 
&VENT SURF_ID='OPEN', XB=6.25,7.0,16.0,16.0,0.0,2.0/ Vent 
&VENT SURF_ID='OPEN', XB=8.0,8.0,1.5,2.25,8.882E-16,2.0/ Vent01 
 
&SLCF QUANTITY='TEMPERATURE', PBY=10.0/ 
&SLCF QUANTITY='TEMPERATURE', PBX=5.0/ 
&SLCF QUANTITY='TEMPERATURE', PBZ=2.0/ 
&SLCF QUANTITY='VISIBILITY', PBY=10.0/ 
&SLCF QUANTITY='VISIBILITY', PBX=5.0/ 
&SLCF QUANTITY='VISIBILITY', PBZ=2.0/ 
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBY=10.0/ 
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBX=5.0/ 
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBZ=2.0/ 
&SLCF QUANTITY='TEMPERATURE', PBX=4.75/ 
&SLCF QUANTITY='TEMPERATURE', PBY=9.5/ 
&SLCF QUANTITY='VISIBILITY', PBX=4.75/ 
&SLCF QUANTITY='VISIBILITY', PBY=9.5/ 
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBX=4.75/ 
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBY=9.5/ 
&SLCF QUANTITY='TEMPERATURE', PBZ=3.75/ 
&SLCF QUANTITY='VELOCITY', PBZ=3.75/ 
&SLCF QUANTITY='VISIBILITY', PBZ=3.75/ 
&SLCF QUANTITY='TURBULENCE RESOLUTION', PBX=5.0/ 
&SLCF QUANTITY='TURBULENCE RESOLUTION', PBY=10.0/ 
&SLCF PBY=10, QUANTITY='SCALAR RESOLUTION', QUANTITY2='MASS FRACTION', 

SPEC_ID='NITROGEN' / 
&SLCF PBX=5, QUANTITY='SCALAR RESOLUTION', QUANTITY2='MASS FRACTION', 

SPEC_ID='NITROGEN' / 
 
&TAIL / 
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Appendix B SLURM Script 

The following is a typical SLURM script used for submission of FDS jobs onto 
the Pan cluster.  The purpose of incorporating this information in this report is to 
provide the reader with a shell for any FDS submissions that they might make to 
the Pan cluster, and also to advise that of the need to become familiar with any 
batch management system on an HPC computing platform. 
 
The technical support personnel and system documentation were exceedingly 
helpful in facilitating this project and getting FDS to run on the Pan cluster. 
 
The file is modified for the specific FDS input file and the allocation of parallel 
resources, saved in the model directory with an appropriate file-name with a .sl 
(script language) extension. 
 
The file is then submitted to SLURM with the command sbatch file-name.sl.  

 
#!/bin/bash 
#SBATCH -J M05-4-2 
#SBATCH -A nesi00202 
#SBATCH -p merit 
#SBATCH --workdir=/projects/nesi00202/HPC/M05-4-2 
#SBATCH --time=100:00:00 
#SBATCH -o hpc1_%J.out 
#SBATCH -e hpc1_%J.err 
#SBATCH --mem-per-cpu=4096 
#SBATCH --ntasks=4 
#SBATCH --cpus-per-task=2 
#SBATCH --mail-type=ALL 
#SBATCH --mail-user=xxx@yyy.zzz 
#SBATCH -C sb 
############################################# 
 
module load FDS/6.2.0-intel-2015a 
 
srun fds_mpi HPC05-4.fds 
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Appendix C BASH Script 

 
The following is the Linux BASH script used on the Beowulf cluster to complete 
multiple submissions of a single FDS model with extraction and compilation of 
run-time and device data for statistical analysis.  The output from individual 
models is progressively overwritten.  Note that the \ character for continuation 
lines has been incorporated in the listing below for clarity.  
 
This is almost certainly not the most elegant script solution ever written (a script 
file expert is unlikely to be impressed) but it is reasonably self-explanatory, it  
works, and it is easily modified for extracting other model information. 
 
The script file was named runtime.sh, loaded in the model directory and 
executed using the file name:  runtime. 
 

 
#!/bin/sh 
 
echo "List of Files:" 
 
for cases in {1..100} 
 
do 

mpirun -x OMP_NUM_THREADS=1 -np 16 -host \ 
Master,Slave0,Slave1,Slave2 fds HPC20-16.fds 

  
 wait 
 

time=$(grep -w 'Total Elapsed' \ 
HPC20-16.out | grep -o -E '[0-9.]'+) 

    
 sd=$(grep -w '1  SD' HPC20-16.out) 
 sd=${sd##*SD} 
 sd=${sd%% s} 
  
 as1=$(grep -w '14  SLINK' HPC20-16.out) 
 as1=${as1##*SLINK} 
 as1=${as1%% s} 
 
 as2=$(grep -w '15  SLINK01' HPC20-16.out) 
 as2=${as2##*SLINK01} 
 as2=${as2%% s} 
 
 echo $time $sd $as1 $as2 >> runtime.txt 
 
 echo $cases $time $sd $as1 $as2 
 
done 
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Appendix D Comparative MPI and OMP Graphics  

 
Figures D1 to D11 show the test model run-time difference between the Pan and 
Beowulf hardware platforms with both OMP and MPI parallelization and 
increasing mesh resolution. 
 
Analysis of these results is incorporated in Section 10.3. 
 
 
  

 
Figure D1.  Simulation Time with Increasing OMP Parallelization 

2 MPI Processes, 32K Computational Domain 
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Figure D2.  Simulation Time with Increasing OMP Parallelization 

4 MPI Processes, 32K Computational Domain 
 

 
Figure D3.  Simulation Time with Increasing OMP Parallelization 

8 MPI Processes, 32K Computational Domain 
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Figure D4.  Simulation Time with Increasing OMP Parallelization 

16 MPI Processes, 32K Computational Domain 
 

 
Figure D5.  Simulation Time with Increasing OMP Parallelization 

2 MPI Processes, 260K Computational Domain 
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Figure D6.  Simulation Time with Increasing OMP Parallelization 

4 MPI Processes, 260K Computational Domain 
 
 

 
 

Figure D7.  Simulation Time with Increasing OMP Parallelization 
8 MPI Processes, 262,144 Cell Computational Domain 
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Figure D8.  Simulation Time with Increasing OMP Parallelization 

16 MPI Processes, 260K Computational Domain 
 

 

 
Figure D9.  Simulation Time with Increasing OMP Parallelization 

2 MPI Processes, 2M Computational Domain 
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Figure D10.  Simulation Time with Increasing OMP Parallelization 

4 MPI Processes, 2M Computational Domain 
 

 
Figure D11.  Simulation Time with Increasing OMP Parallelization 

8 MPI Processes, 2M Computational Domain 
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Appendix E FDS DEVICE Activation Times 

 
32K Computational Domain 

OMP Smoke (s) Link (s) Link01 (s) 
1 40.9 179.1 170.6 
2 40.9 179.1 170.6 
4 40.9 179.6 169.0 

 
Minimum 40.9 179.1 169.0 
Maximum 40.9 179.6 170.6 
Range 0 0.5 1.6 
Mid-Range Variation +/- 0% +/- 0.1% +/- 0.5% 

 
Table E1.  FDS Device Activation Times on Windows Workstation 

(32K Computational Domain) 
 
 
 

260K Computational Domain 
OMP Smoke (s) Link (s) Link01 (s) 

1 37.7 158.9 151.1 
2 37.7 160.6 153.2 
4 37.7 158.9 151.5 

 
Minimum 37.7 158.9 151.1 
Maximum 37.7 160.6 153.2 
Range 0 1.7 2.1 
Mid-Range Variation +/- 0% +/- 0.5% +/- 0.7% 

 
Table E2.  FDS Device Activation Times on Windows Workstation 

(260K Computational Domain) 
 
 

 
2M Computational Domain 

OMP Smoke (s) Link (s) Link01 (s) 
1 39.4 165.8 157.2 
2 39.4 165.8 157.2 
4 39.4 164.0 157.5 

 
Minimum 39.4 164.0 157.2 
Maximum 39.4 165.8 157.5 
Range 0 1.8 0.3 
Mid-Range Variation +/- 0% +/- 0.6% +/- 0.1% 

 
Table E3.  FDS Device Activation Times on Windows Workstation 

(2M Computational Domain) 
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32K Computational Domain 

MPI OMP Smoke (s) Link (s) Link01 (s) 
1 1 40.9 179.1 170.6 
1 2 40.9 179.1 170.6 
1 4 40.9 179.1 170.6 
2 1 40.9 179.1 170.6 
2 2 40.9 179.1 170.6 
2 4 40.9 179.1 169.1 
4 1 40.9 178.1 170.4 
4 2 40.9 178.1 170.4 
4 4 40.9 178.1 170.4 
8 1 41.1 179.4 168.5 
8 2 41.1 179.4 168.5 
16 1 41.1 179.4 169.8 

 
Minimum 40.9 178.1 168.5 
Maximum 41.1 179.4 170.6 
Range 0.2 1.3 2.1 
Mid-Range Variation +/- 0.3% +/- 0.4% +/- 0.6% 

 
Table E4.  FDS Device Activation Times on Beowulf Cluster 

(32K Computational Domain) 
 

 
 

260K Computational Domain 
MPI OMP Smoke (s) Link (s) Link01 (s) 

1 1 37.7 158.9 151.5 
1 2 37.7 158.9 151.5 
1 4 37.7 158.9 151.5 
2 1 38.0 158.1 150.3 
2 2 38.0 158.1 150.3 
2 4 38.0 158.1 150.3 
4 1 37.6 159.2 153.7 
4 2 37.6 159.2 153.7 
4 4 37.6 159.2 153.7 
8 1 38.9 158.6 151.3 
8 2 38.9 158.6 151.3 
16 1 37.3 157.6 153.1 

 
Minimum 37.3 157.6 150.3 
Maximum 38.9 159.2 153.7 
Range 1.6 1.6 3.4 
Mid-Range Variation +/- 2.1% +/- 0.5% +/- 1.1% 

 
Table E5.  FDS Device Activation Times on Beowulf Cluster 

(260K Computational Domain) 
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2M Computational Domain 

MPI OMP Smoke (s) Link (s) Link01 (s) 
1 1 39.4 165.8 157.2 
1 2 39.4 165.8 157.2 
1 4 39.4 165.8 157.2 
2 1 37.8 163.8 157.5 
2 2 37.8 163.8 157.5 
2 4 37.8 163.5 155.6 
4 1 39.7 163.1 157.4 
4 2 40.9 178.1 170.4 
4 4 39.7 163.1 157.4 
8 1 37.3 166.5 156.7 
8 2 37.3 166.5 156.7 
16 1 38.9 162.4 158.5 

 
Minimum 37.3 162.4 155.6 
Maximum 40.9 178.1 170.4 
Range 3.6 15.7 14.8 
Mid-Range Variation +/- 4.6% +/- 4.6% +/- 4.5% 

 
Table E6.  FDS Device Activation Times on Beowulf Cluster 

(2M Computational Domain) 
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32K Computational Domain 

MPI OMP Smoke (s) Link (s) Link01 (s) 
1 1 41.0 179.8 169.5 
1 2 41.0 179.8 169.5 
1 4 41.0 179.8 169.5 
1 8 41.0 179.8 169.5 
1 16 41.0 DNA 170.2 
2 1 40.9 178.5 169.4 
2 2 40.9 178.5 169.4 
2 4 40.9 178.4 169.4 
2 8 40.9 178.5 169.4 
2 16 40.9 178.8 170.3 
4 1 40.9 179.1 170.2 
4 2 40.9 DNA 170.8 
4 4 40.9 DNA 170.1 
4 8 40.9 178.9 171.5 
4 16 40.9 179.0 170.3 
8 1 41.1 179.7 170.2 
8 2 41.1 179.6 170.3 
8 4 41.1 180.0 170.2 
16 1 41.2 178.9 170.5 
16 2 41.2 179.9 170.1 
16 4 41.2 178.9 170.5 
16 8 41.2 178.9 170.5 
16 16 41.2 179.2 170.2 

 
Minimum 40.9 178.4 169.4 
Maximum 41.2 >180.0 171.5 
Range 0.3 >1.6 2.1 
Mid-Range Variation +/- 0.4% >+/-0.5% +/- 0.6% 

 
Note:  DNA: Did Not Activate within the 180 second simulation time. 

 
Table E7.  FDS Device Activation Times on Pan Cluster 

(32K Computational Domain) 
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260K Computational Domain 

MPI OMP Smoke (s) Link (s) Link01 (s) 
1 1 37.8 162.6 155.5 
1 2 37.8 162.6 155.5 
1 4 37.8 162.6 155.5 
1 8 37.8 162.6 155.5 
1 16 37.8 160.8 154.4 
2 1 38.1 162.9 156.8 
2 2 38.1 162.9 156.8 
2 4 38.1 164.2 157.1 
2 8 38.1 162.9 156.8 
2 16 38.1 163.5 154.6 
4 1 37.7 161.6 158.6 
4 2 37.7 162.6 155.9 
4 4 37.7 161.7 157.4 
8 1 38.8 162.8 156.3 
8 2 38.8 162.8 156.3 
8 4 38.8 162.2 157.2 
8 8 41.1 179.8 170.2 
8 16 41.1 DNA 170.6 
16 1 37.2 162.0 156.5 

 
Minimum 37.2 160.8 154.4 
Maximum 41.1 >180.0 170.6 
Range 3.9 >19.2 16.2 
Mid-Range Variation +/- 5.0% >+/-5.6% +/- 5.0% 

 
Note:  DNA: Did Not Activate within the 180 second simulation time. 

 
Table E8.  FDS Device Activation Times on Pan Cluster 

(260K Computational Domain) 
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2M Computational Domain 
MPI OMP Smoke (s) Link (s) Link01 (s) 

1 1 38.3 168.2 160.8 
1 2 38.3 167.5 159.1 
1 4 38.3 167.7 159.7 
1 8 38.3 168.0 159.6 
1 16 38.3 167.5 160.0 
2 1 39.4 168.3 160.5 
2 2 39.4 167.0 160.0 
2 4 39.4 167.3 160.3 
2 8 39.4 166.6 160.5 
2 16 39.4 167.5 159.5 
4 1 37.2 168.0 159.6 
4 2 37.2 167.4 159.4 
4 4 37.2 169.2 160.3 
8 1 37.8 166.3 162.1 
8 2 37.8 167.5 160.5 
8 4 37.8 167.1 159.5 
16 1 38.7 169.5 159.2 

 
Minimum 37.2 166.3 159.1 
Maximum 39.4 169.5 162.1 
Range 2.2 3.2 3.0 
Mid-Range Variation +/- 2.9% +/-1.0% +/- 0.9% 

 
 

Table E9.  FDS Device Activation Times on Pan Cluster 
(2M Computational Domain) 

 


