

DDI: 001164 (0)4 479 3963 Mobile: 001164 (0)27 6413111 fe.aquacoustics.biz

FireNZE is a trading division of Aquacoustics Limited

Consulting Fire

Engineers

34 Satara Crescent

Khandallah

Wellington 6035

 New Zealand

High Performance Computing
as a Resource for

Fire Engineering Design

Prepared by: T.G. O’Brien

For: New Zealand eScience Infrastructure (NeSI)

Dated: 26 April 2016

Revision: Release 01

Page 2 of 61

Table of Contents

1 Executive Summary ... 4

2 Introduction .. 5

2.1 Note of Appreciation .. 6

3 Purpose ... 7

4 Discussion - FDS Processing Speed .. 8

4.1 Amdahl’s Law .. 8

4.2 MPI and OMP .. 8

4.3 Hyper-Threading ... 9

4.4 Other Run-Time Improvement Strategies.. 9

4.4.1 CPU Speed .. 9

4.4.2 Turbo and Over-clocking .. 9

4.4.3 CPU Architecture ... 10

4.4.4 Network .. 10

4.4.5 Processing Overheads ... 10

4.5 Computational Domain Size .. 10

4.6 Grid Resolution ... 11

4.7 FDS Model Parameters ... 12

5 Project Methodology .. 13

6 Computational Platforms ... 14

6.1 HPC Pan Cluster ... 14

6.2 Beowulf Cluster ... 14

6.3 Windows Workstation .. 14

7 Project FDS Model .. 16

7.1 FDS Version .. 16

7.2 Geometry .. 16

7.3 Computational Domain .. 17

7.4 Meshes.. 18

7.5 Design Fire Specification... 18

7.6 FDS Parameters ... 19

7.7 Model Output ... 19

8 Project Test Cases ... 21

9 Project Implementation .. 23

9.1 Post Simulation Processing ... 23

10 Results and Analysis .. 25

10.1 Single Mesh with OMP .. 25

10.1.1 Processor Speed ... 25

10.1.2 OMP Parallelization ... 26

Page 3 of 61

10.1.3 Run-Time and Computational Domain Size ... 26

10.2 MPI (Multi-Mesh) ... 28

10.2.1 Processor Speed ... 28

10.2.2 MPI Parallelization ... 28

10.3 MPI and OMP .. 32

10.3.1 Platform Performance .. 32

10.4 Run-Time Improvement .. 33

10.5 Economy ... 37

10.5.1 Cost ... 37

10.5.2 Efficiency ... 37

10.6 Variation in MPI Processing Time ... 38

10.7 Variation in FDS Output .. 40

10.7.1 FDS Verification ... 40

10.7.2 Findings ... 40

10.7.3 Discussion ... 41

11 Conclusions ... 42

11.1 Commercial HPC .. 42

11.2 Parallelization .. 42

11.3 Computational Domain .. 43

11.4 Run-Time Variability .. 43

11.5 FDS Model Output Variability .. 43

12 References ... 44

Appendix A FDS Test Model .. 46

Appendix B SLURM Script ... 48

Appendix C BASH Script .. 49

Appendix D Comparative MPI and OMP Graphics 50

Appendix E FDS DEVICE Activation Times .. 56

Page 4 of 61

1 Executive Summary

Fire modelling using Computational Fluid Dynamics (CFD) can present
significant run-time challenges for real world fire engineering problems.

This project evaluates the run-time of Fire Dynamics Simulator (FDS) using
currently available commercial High Performance Computer (HPC) resources in
comparison with the more modest computer platforms usually available to fire
engineers.

While there have been numerous studies of FDS performance and there is a
significant body of literature on parallel processing strategies, both software and
hardware have continued to evolve over time. A new study is therefore
warranted.

This report also considers aspects of CFD run-time optimization through model
refinements and parallel processing strategies to reduce model run-time. Many
of the conclusions reached on these issues simply validate advice contained
within the FDS User’s Guide and Technical Manual.

The report concludes that commercial HPC facilities provide a viable resource
for CFD, particularly when a number of moderate-to-large models must be run
concurrently to meet project timelines. However modest computational
resources remain a useful adjunct to commercial HPC for model development
and for fast processing of a limited number of fire scenarios.

This report includes a comprehensive description of the simulation and the
project methodology to allow other users to replicate the results on other
hardware and software platforms for comparative purposes. Readers interested
in the analysis and conclusions should refer directly to Sections 10 and 11.

Page 5 of 61

2 Introduction

Computational Fluid Dynamics (CFD) can be a useful design tool for certain
classes of fire engineering problem. The CFD program of industry choice is Fire
Dynamics Simulator (FDS) by NIST1 because the program is available for free, it
has a wide user base, it is well-supported and documented, it runs relatively
quickly, and has been subjected to extensive validation6,18.

A problem that arises from time-to-time in the application of FDS is excessive
processing time. Some simulations can take days or weeks to produce useful
results even with refined (simplified) models. This is problematic for real-world
design projects which may require many simulations to be run in a relatively
short time frame to meet project schedules.

While many fire engineering companies have access to at least modest
computational resources for FDS computation these may not be able to process
FDS simulations in a useful timeframe for commercial projects. Under these
circumstances the use of contracted High Performance Computer (HPC)
processing may provide the required computational resources to meet
contractual time frames.

There are numerous publications about FDS run-time using parallel
processing2,3, a number of which make run-time comparisons between different
hardware platforms. However these are not directly applicable to the hardware
platforms considered in this project. Further, both the computer hardware,
required for parallel processing software, and FDS continue to evolve. A new
comparative study of FDS performance is therefore warranted.

This study is largely a book keeping exercise and is therefore of limited
academic merit. However fire engineering practitioners may find the results
from over 8,000 core/hours of processing useful for assessing project
computational requirements and reducing model simulation time.

It should be noted at the outset that parallel processing of FDS models is not a
panacea for improving model processing time. Model refinements and the
selection of an appropriate computational domain may be significantly more
productive.

While many models can be expected to run successful in a parallel processing
environment with a reduction in run-time some will fail to run to completion –
usually, but not always, associated with a weakness in the model. Resolving
parallel processing issues can be extremely difficult and time consuming.

Page 6 of 61

2.1 Note of Appreciation

FireNZE thanks New Zealand eScience Infrastructure (NeSI) and The Centre for
eResearch, University of Auckland for providing computer processing time on
the HPC Pan cluster for this project.

I would like to acknowledge the assistance provided by Mr Gene Soudlenkov
(NeSI Support) for his prompt and helpful responses throughout this project, and
the fire engineers and academics that took time to read the draft and provide
critical comments and suggestions.

Page 7 of 61

3 Purpose

The purpose of this project is to compare the processing speed of FDS on an
HPC platform against more modest computational resources.

The evaluation will also consider the run time performance of MPI and OMP
parallel processing strategies, aspects of model optimization for improvements
in run-time, and other factors influencing processing performance and model
results.

Page 8 of 61

4 Discussion - FDS Processing Speed

4.1 Amdahl’s Law

The parallel processing of FDS is generally described by Amdahl's law4 with a
serialization percentage between about 20 and 60%5. A direct consequence of
this is that there are asymptotic limits to the maximum processing speed that
can be achieved through increased computational parallelization as shown in
Figure 1.

Figure 1. Amdahl’s Law for FDS

The point of diminished returns for parallel processing of an FDS model typically
occurs with allocation of between 8 and 16 processes. Run-time reductions
through the application of more than 16 processes to a single simulation can be
expected to be minimal.

4.2 MPI and OMP

The FDS environment provides two methods of parallel processing called OMP
(Open Multi-Processing, also referred to as OpenMP) and MPI (Message
Passing Interface). The two methods can be applied concurrently on the same
FDS simulation, subject to hardware limitations.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e

la
ti

v
e

 R
u

n
-T

im
e

Number of Processes

20% Serial

60% Serial

Page 9 of 61

OMP allows an FDS model with one or meshes to be run in parallel on a single
CPU (Central Processing Unit) with one or more cores. While OMP can be run
concurrently on several CPU’s it cannot run the same process in parallel on
different CPU’s. Section 3.1.1 of the FDS Users Guide6 suggests that the
maximum speed benefit of OMP will be about a factor of two.

MPI allows an FDS model with more than one mesh to be run in parallel on
more than one CPU on one or more computers. MPI will almost always be more
productive than OpenMP6, Sect. 3.1.3.

4.3 Hyper-Threading

A number of computer processors7 offer hyper-threading where a single physical
processing core is allocated to several virtual cores through embedded firmware
within the core. The use of virtual multi-threading has been shown to be
detrimental3 to the overall processing time of FDS.

In this project virtual multi-threading was disabled so that computational
processes were assigned to physical processing cores.

4.4 Other Run-Time Improvement Strategies

4.4.1 CPU Speed

For a given processor architecture CPU clock speed is a key parameter for
FDS run-time. An FDS model running on a computer with a 4.4 GHz
processor clock speed can be expected to complete significantly faster
than on a 2.7 GHz computer. The actual speed improvement is unlikely to
be a linear function of processor speed due to other factors such as
memory access time.

4.4.2 Turbo and Over-clocking

Some CPUs have the facility to modestly increase clock speed using turbo
modes or over-clocking without radical modification to cooling. While these
modest speed improvements may be useful for improved processing
performance they come at the expense of potential instability, voided
warranties and a reduction in anticipated hardware service life. Long term
processor stability should be evaluated after application of clock speed
enhancements using programs such as Prime958.

Page 10 of 61

4.4.3 CPU Architecture

CPU architecture is also important to FDS processing speed. The
bandwidth and size of processor cache memory (fast on-chip memory used
for transfer of information between cores) can be expected to have a
significant influence on the speed of parallel processing.

Note that the CPU speed of servers (as typically used in HPC clusters) will
generally be lower than for desktop computers, but with greater amounts of
higher bandwidth cache. This is a consequence of the typical usage,
power efficiency and reliability required in a server environment.

4.4.4 Network

Network speed is an important consideration in parallel processing
applications where processors on different nodes need shared access to
dynamic data.

Under MPI it is possible to tune network performance for improved data
transfer between FDS processes on separate computers. There are also a
number of different protocols for data transfer across a network that offer
different levels of network speed and security (cf. SSH and RSH9, rsync
and mpisync). Network tuning and data transfer protocols will not be
specifically evaluated through this project.

4.4.5 Processing Overheads

Operating System (OS) and other application over-heads are relevant to
FDS computational performance. This project does not examine these
aspects of the computational environment on FDS run-time performance.
Other software under user control that is not necessary for FDS processing
or project data collection was not run during FDS simulations.

Similarly, the run-time priority (niceness in Linux parlance) assigned to
FDS processes by the OS was retained at defaults. Modest processing
speed improvements can be realised by increasing the run time priority of
FDS and associated software through the OS, but with a risk of introducing
stability issues.

4.5 Computational Domain Size

Most FDS users will be aware that the computational time required for a
simulation increases significantly with increasing resolution of the computational
domain.

Page 11 of 61

The computational burden for an FDS model will increase by a factor of about
16 when the computational domain basic cell dimension is halved (increasing
the number of computational cells by a factor of 8). This is a direct
consequence of scaling in a three dimensional orthogonal Cartesian coordinate
system (but note that FDS models can be configured in two dimensional and
axially symmetrical cylindrical space)6, Sect. 6.3.2.

The size of the computational domain must clearly encompass the fire cells of
interest and will often extend to the entire building and beyond. Subject to the
symmetry of the problem it may be possible to use mirror boundary conditions to
minimize the computational domain.

Note: In practical modelling it may be necessary to extend the computational
domain beyond the building envelope to ensure vent flows are appropriately
simulated. Extending the model also allows rapid visual assessment of
inadvertent leakage paths through the specified geometry.

4.6 Grid Resolution

Grid resolution is an important FDS parameter in determining how well a model
will represent the fire phenomena of interest, and directly affects the size of the
computational domain.

Grid resolution is initially determined by rules of thumb:

The design fire’s equivalent diameter should be spanned by between 10
and 18 basic cubic cell dimensions.

or through consideration of the parameter D*/dx, but should be confirmed
through sensitivity analysis by examining metrics of interest with increasing
resolution.

FDS provides turbulence and scalar resolution metrics that can provide insight
into the appropriateness of the grid resolution. These metrics are seldom used
in practise. Recent releases of FDS (later than 6.2.0) have resulted in changes
to the availability turbulence and scalar resolution10.

Page 12 of 61

4.7 FDS Model Parameters

There are many user-adjustable FDS parameters that can lead to dramatic
changes in processing time for a given simulation. These include the
introduction of particles, radiation angular resolution, the specification of
pressure zones and HVAC. Those aspects of an FDS calculation that are not
important to the validity of a simulation, or will not contribute useful output,
should be dispensed with.

For example the calculation of radiation from a relatively small fire in a very large
space may have little influence on fire growth through compartment effects and
have no measurable influence on tenability. In this instance if FDS processing
speed is an issue then the radiation solver could be disabled6, Sect. 1.4 (3).

This study cannot reasonably assess the effects of every FDS parameter on
model run-time. Nor are we particularly interested in the appropriateness of
model resolution, other than to ensure that model output is comparable between
defined simulations on different computational platforms.

Page 13 of 61

5 Project Methodology

The project examines the run time of a relatively simple FDS model with
different mesh configurations and resolution on three hardware platforms.

• Each test case was run to completion using identical process allocations.

• Run-time was measured and compared between platforms, allocated
processes and the method and extent of applied parallel processing.

• Model output was compared between platforms, allocated processes and
the method and extent of applied parallel processing.

• Run-time and model output variance was examined.

Page 14 of 61

6 Computational Platforms

The following hardware platforms were selected for this project.

• HPC Pan Cluster

• Beowulf Linux Cluster

• Windows Workstation

6.1 HPC Pan Cluster

The HPC Pan cluster11 is a research and commercial resource provided by The
Centre for eResearch, University of Auckland through New Zealand eScience
Infrastructure (NeSI)12.

The Pan cluster is capable of concurrently running hundreds of FDS models with
significant parallelization (> 6,000 physical cores, but subject to allocated
resources and concurrent use by other subscribers).

The Pan cluster includes a variety of Intel architecture processors running at
between 1.87 and 2.8 GHz. It has significant RAM resources and is networked
at 40 Gb/s. Test cases run on the Pan cluster were run in Node Groups b, c, d
and e with Intel Xeon E5-2680 cores running at 2.7 GHz. The processors run
Red Hat Enterprise Linux 6.3 OS.

The cluster is organised into node groups of identical architecture nodes. The
resources of nodes vary from group to group which may result in changes to the
resources allocated to a particular simulation, subject to node group allocations
in the submission batch file.

6.2 Beowulf Cluster

A Beowulf13 cluster was built by FireNZE as a low-cost dedicated solution for fast
processing of a limited number of FDS models with limited parallelization (up to
16 cores per model).

The cluster comprises four Intel I7 4097K quad core processors, each with a
clock speed of 4.4 GHz, 16 GB RAM and solid state hard drives, connected with
a dedicated 1 Gb Ethernet LAN. The machines run under Linux Ubuntu 14.04
64 bit OS.

6.3 Windows Workstation

This is a typical personal computing platform that exceeds the minimum
recommended hardware specifications for FDS processing6, Sect. 2.2 et seq.. The
platform has a single CPU and cannot run FDS in an MPI parallel environment.

Page 15 of 61

Effective concurrent modelling capability is limited to the allocation of four cores
under OMP.

The platform comprises an Intel I7 3770 quad core processor running at 3.9
GHz with 16 GB RAM. The machine runs under a Windows 7 64 bit OS.

Page 16 of 61

7 Project FDS Model

The test model used for this project, while representative of a typical FDS
analysis of a compartment fire, is entirely fictional. The FDS input file is listed in
Appendix A.

7.1 FDS Version

The model was processed on all hardware platforms using FDS Version 6.2.0,
Compilation Date: Sat, 11 Apr 2015, SVN Revision: 22343. This was the most
recent release of FDS at the time this project was initiated.

7.1.1 Discussion

As a general rule practitioners should use the most recent release of FDS
when commencing a new project and, in my opinion, regulators are right to
insist upon this.

The reasons for upgrading include improvements in functionality and
coding, enhancements to the calculation of the underlying physics (noting
that the physics do not change) and the provision of software support.
Version changes are fully documented in the FDS release notes that
accompany the software and all releases are subjected to validation18 by
NIST.

There was a general fire industry reluctance to upgrade from FDS Version
5.6 to Version 6.0 because of increased processing burden (the very
subject of this study). It is apparent from NIST’s change management
process and the FDS User’s Manual6 that the development team were
cognisant of this issue. Clearly they considered that the upgrade
enhancements more than compensated for the increased run-time.

Adoption of the latest release of FDS also provides the impetus for
continued development and support of the program.

7.2 Geometry

All simulations are based on an 8 m wide x 16 m long x 4 m high compartment
model with two open vertical vents, each 2 m high x 0.75 m wide as shown in
Figure 2.

Page 17 of 61

Figure 2. Test Model (8 mesh, 0.125 m cubic cell dimension)

7.3 Computational Domain

The model computational domain was established using a single-sized cubic cell
(mesh stretching was not applied). The cell basic dimension was varied as
shown in Table 1. For brevity these are referred to as the 32K, 260K and 2M
computational domains throughout this report.

The range of computational domain sizes tested in this project are considered to
be small to moderate. Large computational domains might extend to tens of
millions of cells.

Cell Size Computational Domain Abbreviation
(m) (Number of Cells in Model)
0.25 32,768 32K
0.125 262,144 260K

0.0625 2,097,152 2M

Table 1. Model Computational Domains

Page 18 of 61

Initial experiments with a cell size of 0.125 m and a single mesh required about
three hours of processing for a 180 second simulation on the Windows
Workstation. This was considered to be an adequate duration to ensure that
FDS initialization and wrap-up processes were not a significant contribution to
the total computation time. The single process 2M case was expected to run to
completion in approximately 72 hours.

The design fire was offset from the centre of the compartment to ensure that
remained completely bound within a single mesh for the multiple mesh test
cases. Compartment dimensions were selected to ensure that the design fire
plume was largely contained within a single mesh in the multiple mesh test
cases. The rationale for this is to reduce high levels of model activity at inter-
mesh boundaries. This is considered to be good practise for real world
modelling problems6, Sect. 6.3.4.

The compartment ventilation area was sized to ensure that the design fire
remained fuel-controlled throughout the 180 second simulation, but with
significant hot upper layer development to ensure well-distributed fire
phenomena for defined meshes.

7.4 Meshes

Multiple meshes are required for the application of MPI parallel processing.

Test models were evaluated with 1, 2, 4, 8 and 16 meshes. Each mesh in any
particular test case contained an identical number of computational cells. The
number of assigned MPI processes for a test case was equal to the number of
meshes.

Mesh cell dimensions were established as factors of 2, 3 and 5 to ensure
optimized processing6, Sect. 6.3.1. Note that this arrangement does not necessarily
provide for optimum distribution of the computational burden between meshes,
particularly early in a simulation.

Mesh priority for abutting meshes of the same resolution is understood to have
no affect run-time under recent FDS releases14. The general advice on this
issue is that finer resolution meshes should have a higher priority (be listed
earlier in the FDS input file) than courser meshes, otherwise mesh priority is not
important. Mesh priority in this project was assigned on the basis of the
anticipated mesh of most fire activity to the least activity (old habits die-hard).

7.5 Design Fire Specification

The design fire was specified with a fast αt2 growth rate, a plan area of 1.5 m2,
and a maximum Heat Release Rate Per Unit Area (HRRPUA) of 1,000 kW/m2.
The model was run to simulate 180 seconds with a final heat release rate of
1.55 MW.

Page 19 of 61

The design fire was specified in accordance with C/VM215 requirements for
occupancies with less than 3 m of storage height. Combustion yields were
established in accordance with C/VM2 using defined chemistry in the FDS single
stage combustion model.

7.6 FDS Parameters

The initial FDS flow field6, Sect. 6.4.1 was defined without noise (&MISC
NOISE=.FALSE.) on the misunderstanding that the pseudo-random flow-field
noise seed was not constant and would result in variations in results and run
time for a particular model. Subsequent analysis showed that the seed is
constant resulting in consistent model output and no contribution to variations in
model processing time. In real world projects this parameter is .TRUE. by
default to prevent the development of a perfectly symmetrical flow field in a
symmetrical domain – fire is, after all, a stochastic process.

With the exception of NOISE=.FALSE., FDS simulation parameters were run at
default values.

7.7 Model Output

In order to exercise computer platform data storage a number of typical FDS
output parameters have been defined in the model as follows:

• Temperature

• Visibility

• Velocity

• FEDco

• Radiation

• Upper Layer Parameters

• Turbulence Resolution

• Scalar Resolution

These measurements are to be recorded as plot files, slice files, boundary files,
point and linear measurements (as appropriate).

Page 20 of 61

Restart files (&DUMP RESTART = 30) were also recorded every 30 simulation
seconds. Restart information is not essential for this particular project as the
model runs to completion is a reasonable timeframe and individual results are
not project critical. Although the restart files are relatively large and exercise
disk access they are not an appreciable contributor to total run-time.

Restarts are recommended for medium to large FDS simulations for commercial
purposes to minimize the extent of reprocessing in the event of computer
outage. They can also provide useful information for processing computational
errors (such as numerical instability) and allow some aspects of the simulation to
be adjusted through the course of a calculation.

Page 21 of 61

8 Project Test Cases

The project test cases are described in Tables 2 and 3. Each test case was run
on each computer platform with the proviso that the physical processing cores
were not over-subscribed (not more than one computational process was
allocated to a single physical core).

Model Number Meshes MPI Processes OMP Processes Cores Cell Size

F20-1-1 1 1 1 1 2.0
F10-1-1 1 1 1 1 0.125
F05-1-1 1 1 1 1 0.5

Table 2. Mesh Resolution Run-Time Evaluation

The mesh resolution tests in Table 2 provide a comparative measure of single
process computational speed. These provide the single-process bench-mark for
the parallel processing cases.

The applied cell sizes seeks to confirm the 16 times increase in processing time
with a halving of the basic computational cell dimension, and provides a metric
for estimating the run-time of other models.

Model Number Meshes MPI Processes OMP Processes Cores
Mxx-1-2 1 1 2 2
Mxx-1-4 1 1 4 4
Mxx-1-8 1 1 8 4*
Mxx-2-1 2 2 1 2
Mxx-2-2 2 2 2 4
Mxx-2-4 2 2 4 8
Mxx-2-8 2 2 8 8*
Mxx-4-1 4 4 1 4
Mxx-4-2 4 4 2 8
Mxx-4-4 4 4 4 16
Mxx-4-8 4 4 8 16*
Mxx-8-1 8 8 1 8
Mxx-8-2 8 8 2 16
Mxx-8-4 8 8 4 16*
Mxx-8-8 8 8 8 16*
Mxx-6-1 16 16 1 16

Mxx-16-2 16 16 2 32*
Mxx-16-4 16 16 4 64*
Mxx-16-8 16 16 8 128*

Notes: * Cores may be over-subscribed subject to hardware.

xx replaced with mesh resolution and hardware platform identifier

Table 3. MPI and OMP Run-Time Evaluation

Page 22 of 61

The MPI and OMP tests are designed to comparatively evaluate parallel
processing configurations within and between hardware platforms.

Two further sets of 100 simulations were run to measure the simulation time
variability for a given model on the Beowulf Linux cluster. This also provided
insight into OS overheads and processing bottlenecks on this hardware
platform.

The model set for the project comprised 46 test model simulations, a further
200 simulations completed to evaluate run time variation, and a number of
developmental simulations. The total processing time for the project across all
platforms exceeded 8,000 core hours.

Page 23 of 61

9 Project Implementation

The base FDS test model was prepared (refer to Appendix A) and tested.

The base model was reconfigured for multiple meshes and resolutions and run
under different process allocations on each of the three hardware platforms over
a period of 16 weeks.

A template script file was provided by NeSI for running the test cases on the
HPC platform under SLURM16 (Simple Linux Utility for Resource Management).

A further set of analyses was completed on the Linux cluster to examine test
case run-time variability. Two models were each run several hundred times
under a Linux shell script that extracted model run-time and DEVICE activation
time as a measure of variability.

9.1 Post Simulation Processing

Post-simulation processing of output data, as might be required for a fire
engineering design, is outside of the scope for this project other than for
comparing model results between hardware platforms.

The size of the FDS output files for the refined mesh models was substantial,
extending to approximately 4 GB for the 2M models. Downloading the FDS
output files from the HPC Pan cluster for local analysis proved to be a significant
burden at ADSL speeds (measured at typically 0.23 MB/s). Even with VDSL
and an assumed increase in download speed by a factor of ten to 2.3 MB/s, the
time for FDS model download can be an appreciable fraction of processing time
- perhaps as much as 6%.

In order to reduce the download burden the entire FDS output of only four test
cases were downloaded from the HPC Pan cluster in their entirety. All aspects
of these complete datasets were compared with other platform test cases to
validate the model on each platform.

For all other test cases downloads were limited to the following subset of FDS
and SLURM output files.

FDS Model
Device File
HRR File
Model Output File

SLURM Runtime Script
SLURM Error File
SLURM Output File

Page 24 of 61

This minimal download was sufficient to examine test case run-time, compare
model heat release rate history and device activation times, confirm allocated
computational resources and ensure that each test case had run to completion
without error.

Test case run-time and device activation measurements were subject to
comparative analysis across platforms and between applied computational
resources; the results summarised, considered and reported.

Page 25 of 61

10 Results and Analysis

The FDS results of the simulated models extends to 100’s of GB on three
hardware platforms. This project is primarily concerned with simulation run time
so the bulk of this information (which would be essential to understanding the
fire performance of the model) is redundant and is not included in this report.

Run-time data has been reduced to comparative graphics for ease of visual
interpretation. The reader is cautioned to note Y axis scales when comparing
graphics.

The data is necessarily sparse because simulation of all possible parallel
processing recourse allocations would be a formidable, expensive and time-
consuming task, even with limited computational domains.

The bulk of the experimental data is presented as discrete MPI and OMP
resource allocations plotted against run-time. Trend lines have not been
incorporated in the graphs because the data is generally sparse and because
these do not accurately portray discrete events.

10.1 Single Mesh with OMP

Figures 2 to 4 show test model run-time on the three (Windows, Pan and
Beowulf) hardware platforms with increasing OMP parallelization and increasing
mesh resolution (the progressively larger computational domains in Table 1).

The Pan platform provided an anomalous (extended) run-time for the OMP = 2
case on the 32K computational domain (refer to Figure 2). The cause could not
be identified and the model could not be readily re-run due to limitations of
project processing allocation.

10.1.1 Processor Speed

It is immediately evident from Figures 2 to 4 that increasing processor
speed translates directly to decreased model run-time.

For the OMP Processors = 1 case there is no parallel processing and the
variation of run time between platforms decreases with increasing
processor speed. This is independent of the size of the computational
domain. The Beowulf platform (4.4 GHz) was 21% faster than the
Windows platform (3.9 GHz), and 47% faster than the Pan platform
(2.7 GHz).

 The relationship between processor speed and run time is not linear. This

is considered to be a consequence of differences in the hardware and
software configurations of the three platforms.

Page 26 of 61

10.1.2 OMP Parallelization

 The extent of this analysis on the Beowulf and Windows platform was
limited to 4 OMP processes by the available processor cores.

Application of increasing OMP parallelization (up to 8 OMP processes)
resulted in reduced model run-time, but with decreasing returns. This is in
general accordance with Amdahl ’s Law.

The reduction in run-time with increasing OMP parallelization improved
with increasing computational domain size. This is attributed to a relative
increase in model calculation time verses parallelization burden.

 The application of more than 8 OMP processors on the Pan platform
resulted in an increase in model run-time. This is attributed to the
serialization percentage of the model and the increasing parallelization
burden.

 The Pan cluster provided the greatest percentage reduction in run-time

through OMP parallelization with 8 OMP processes on the 2M
computational domain (Figure 4). The run-time improvement was 54%
reducing from 89.9 hours to 39.9 hours. The maximum run-time reduction
with OMP parallelization was typically less than 50% across all model
resolutions and hardware platforms.

The reason why the Pan platform is more efficient in the application of
OMP than the Windows or Beowulf platforms is attributed to its core cache
size and bandwidth. The Pan Xeon processors have a 20 MB cache with
a memory bandwidth of 51.2 GB/s compared with Intel I7 processors with
8 MB cache and 25.6 GB/s bandwidth.

With the application of OMP the Beowulf platform provided the best
run-time, being approximately 30% faster than the Windows and Pan
platforms.

10.1.3 Run-Time and Computational Domain Size

As the computational domain size increases by a factor of eight (the basic
cell dimension is halved progressing from Figure 2 to 3 and from Figure 3
to 4) the model run-time increases by a factor of approximately 16. This
result applies to all platforms and is independent of OMP or MPI
parallelization.

Model run-time can therefore be predicted by initially running a low
resolution (and relatively fast) simulation and scaling accordingly. Initial
low resolution modelling also provides a useful check on aspects of FDS
model functionality, including device triggered events, design fire growth
rate, model leakage and stability and is therefore recommended practise.

Page 27 of 61

Figure 2. Simulation Time with Increasing OMP Parallelization

1 MPI Process (1 Mesh), 32K Computational Domain

Figure 3. Simulation Time with Increasing OMP Parallelization

1 MPI Process (1 Mesh), 260K Computational Domain

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
s)

OPM Processes

Pan

Windows

Beowulf

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

OMP Processes

Pan

Windows

Beowulf

Page 28 of 61

Figure 4. Simulation Time with Increasing OMP Parallelization

1 MPI Process (1 Mesh), 2M Computational Domain

10.2 MPI (Multi-Mesh)

Figures 5 to 7 show the model run-time difference between the Pan and Beowulf
hardware platforms with increasing MPI parallelization and increasing mesh
resolution (the progressively larger computational domains in Table 1).

Note that MPI cannot be applied on the Windows platform because it has a
single 4-core processor. Although multiple mesh models can be run on the
Windows platform these cannot be invoked with MPI parallelization.

10.2.1 Processor Speed

Processor speed remains a significant factor for reduced run-time,
particularly with low numbers of applied MPI resources and larger
computational domains.

10.2.2 MPI Parallelization

Run-time decreases (improves) with increasing MPI parallelization on both
hardware platforms, but with decreasing returns. This is an expected result
in general accordance with Amdahl ’s law.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
h

r)

OMP Processes

Pan

Windows

Beowulf

Page 29 of 61

For larger computational domains the Beowulf platform was fractionally
faster than the Pan platform with 16 MPI processes.

Both the Beowulf and Pan platforms were significantly faster than the
Windows platform under OMP with at least an 80% reduction
(improvement) in processing time (38.7 hours reduced to 6.6 hours for the
2M model).

For a given number of cores MPI parallelization resulted in faster run-times
than OMP (compare Figures 2 and 5, Figures 3 and 6 and Figures 4
and 7). For example the run-time improvement of the 2M model on the
Pan platform from 2 to 4 OMP processes (Figure 4) is 26%, while the run-
time improvement from 2 to 4 MPI processes (Figure 7) is 46%.

The rate at which MPI parallelization reduces run-time is significantly
greater on the Pan platform, to the extent that the speed advantage of the
Beowulf platform is negated after the application of 4 MPI processes on the
32K computational domain model and 16 MPI processes on the 260K and
2M cell models.

This is attributed to the cache bandwidth described previously and the
network speed of the Pan platform (40 Gb/s) compared to the relatively
slow 1 Gb/s of the Beowulf platform.

Examination of the Beowulf Ethernet network load during MPI model
processing showed a average data transfer rates of approximately 30 MB/s
(concurrent send and receive) between computer nodes. The time
required for data transfer on the Beowulf network is therefore a significant
proportion of the total time that might otherwise be available for model
calculation. Approximately 25% of model processing time is required for
data transfer between nodes (30 MB/sduplex x 8 b/B / 1 Gb/s = 0.24).
Assuming that the Pan platform requires similar data transfer rates
between nodes for MPI processing then the network overhead is less than
1%.

This identifies that the 1 Gb/s Ethernet throughput is a significant
deficiency with the Beowulf hardware for MPI processing. While hardware
improvements to the network such as Infiniband or optical LAN networking
would be expected to improve the Beowulf MPI processing time these are
relatively expensive additions to what is a budget FDS hardware platform.

An alternative approach for MPI processing speed improvement on the
Beowulf platform is improved network data transfer efficiency and protocols
(see Section 4.4.2 above). Literature17 suggests that RSH may provide at
least a 20% improvement over SSH on this secure platform.

Page 30 of 61

The Beowulf platform is currently fully utilized processing commercial FDS
models so experimenting with network protocols could not be completed in
conjunction with this project (attempting to fix what isn’t broken can result
in really broken with extensive, unproductive down-time).

Figure 5. Simulation Time with Increasing MPI Parallelization
1 OMP Process, 32K Computational Domain

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
s)

MPI Processes

Beowulf

Pan

Page 31 of 61

Figure 6. Simulation Time with Increasing OMP Parallelization
1 OMP Process, 260K Computational Domain

Figure 7. Simulation Time with Increasing MPI Parallelization
1 OMP Process, 2M Computational Domain

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

MPI Processes

Beowulf

Pan

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
h

r)

MPI Processes

Beowulf

Pan

Page 32 of 61

10.3 MPI and OMP

In preparing this report some time was spent agonizing over the most
appropriate visual representation of the application of OMP and MPI. While
three-dimensional graphics allow clear visualization of optimum platform
performance, they do not readily show comparative performance between
platforms. Also coloured information does not transfer readily to monochrome
which is often necessary for publication.

For brevity this Section contains three-dimensional representations of platform
performance with perspective and colour. Detailed comparative information has
been included in Appendix D. Note that the graphics in this Section includes
interpolated data between measured computational platform limits.

Figures 8 to 13 show the test model run-time on either the Pan or Beowulf
platforms with both OMP and MPI parallelization and increasing mesh
resolution. Bright yellow cells are used to identify the minimum run-time
condition on a graph. The platform results for each mesh resolution are
produced on a single page with appropriate scaling to facilitate visual cross-
platform comparisons.

A question that one might ask is, If MPI consistently produces improved run-
times than OMP, then why apply OMP? The answer is that some models are
not appropriately configured for MPI (insufficient meshes or unbalanced
computational loads between meshes), it may not be possible to apply available
hardware resources as MPI processes, and the application of both MPI and
limited OMP resources can be expected to reduced model run-times.

10.3.1 Platform Performance

The Pan platform out-performed the Beowulf platform for the 32K and
260K models with run-time reductions of 38% (71 seconds) and 8%
(2.4 minutes) respectively, but was slower for the 2M model by 11%
(0.8 hours).

The Pan platform required twice the computational resource of the Beowulf
platform to achieve these results, while the differences in processing speed
are arguably insignificant in the context of a real world fire engineering
problems.

The minimum run-time of the test model on the Pan cluster (for each
computational domain) was with a concurrent allocation of 4 OMP and
8 MPI processes. The minimum run-time of the test model was achieved
on the Beowulf cluster with 16 MPI processes.

Page 33 of 61

10.4 Run-Time Improvement

With optimum application of both MPI and OMP the best run-time improvements
achieved (by platform) were:

 Windows: 33.6% with 4 OMP processes

Beowulf: 84.5% with 16 MPI processes

Pan: 91.9% with 8 MPI and 4 OMP processes

Page 34 of 61

Figure 8. Beowulf Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run-time: 185 s with 16 MPI

Figure 9. Pan Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run-

1

OMP Processes

1 2
3

4

OMP Processes

Figure 8. Beowulf Platform Simulation Time with OMP and MPI Parallelization,
32K Computational Domain.

time: 185 s with 16 MPI and 1 OMP Processes

Figure 9. Pan Platform Simulation Time with OMP and MPI Parallelization,
32K Computational Domain

-time: 114 s with 8 MPI and 4 OMP Processes

2
3

4

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

OMP Processes

MPI Processes

5
6

7
8

9
10

11
12

13
14

15
16

8
9

10
11

12
13

14
15

16

OMP Processes

Figure 8. Beowulf Platform Simulation Time with OMP and MPI Parallelization,

rocesses)

Figure 9. Pan Platform Simulation Time with OMP and MPI Parallelization,

rocesses)

0

500

1000

1500

S
im

u
la

ti
o

n
 T

im
e

 (
s)

MPI Processes

0

500

1000

1500

1
2

3
4

5
6

7

S
im

u
la

ti
o

n
 T

im
e

 (
s)

MPI Processes

Page 35 of 61

Figure 10. Beowulf Platform Simulation Time with OMP and MPI

(Minimum Run-time:

Figure 11. Pan Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run-

1

OMP Processes

1 2
3

4

OMP Processes

Figure 10. Beowulf Platform Simulation Time with OMP and MPI
260K Computational Domain.

time: 29.7 minutes with 16 MPI and 1 OMP

Figure 11. Pan Platform Simulation Time with OMP and MPI Parallelization,
260K Computational Domain.

-time: 27.3 minutes with 8 MPI and 4 OMP Processes)

2
3

4

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

OMP Processes

MPI Processes

5
6

7
8

9
10

11
12

13
14

15
16

8
9

10
11

12
13

14
15

16

OMP Processes

Figure 10. Beowulf Platform Simulation Time with OMP and MPI Parallelization,

with 16 MPI and 1 OMP Processes)

Figure 11. Pan Platform Simulation Time with OMP and MPI Parallelization,

PI and 4 OMP Processes)

0

100

200

300

400

1

S
im

u
la

ti
o

n
 t

im
e

 (
m

in
)

0

100

200

300

400

1
2

3
4

5
6

7

S
im

u
la

ti
o

n
 t

im
e

 (
m

in
)

MPI Processes

Page 36 of 61

Figure 12. Beowulf Platform Simulation Time with OMP and MPI Parallelization,

(Minimum Run

Figure 13. Pan Platform Simulation Time with OMP and

(Minimum Run

1

OMP Processes

1 2 3
4

OMP Processes

Figure 12. Beowulf Platform Simulation Time with OMP and MPI Parallelization,

2M Computational Domain.
(Minimum Run-time: 6.7 hours with 16 MPI and 1 OMP Processes)

Figure 13. Pan Platform Simulation Time with OMP and MPI Parallelization,
2M Computational Domain.

(Minimum Run-time: 7.5 hours with 8 MPI and 4 OMP Processes)

2
3

4

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

OMP Processes

MPI Processes

5
6

7
8

9
10

11
12

13
14

15
16

8
9

10
11

12
13

14
15

16

OMP Processes

Figure 12. Beowulf Platform Simulation Time with OMP and MPI Parallelization,

OMP Processes)

MPI Parallelization,

time: 7.5 hours with 8 MPI and 4 OMP Processes)

0

20

40

60

80

100

1

S
im

u
la

ti
o

n
 t

im
e

 (
h

r)

MPI Processes

0

20

40

60

80

100

1
2

3
4

5
6

7

S
im

u
la

ti
o

n
 t

im
e

 (
H

r)

MPI Processes

Page 37 of 61

10.5 Economy

10.5.1 Cost

The cost of FDS model processing is usually an insignificant fraction of the
cost of a fire engineering project, and is secondary to reducing run-time to
achieve project requirements.

Computer time is usually billed on the basis of expended core/hours with a
commercial rate of less than US$0.20 per core hour available at the time of
writing.

With efficient allocation of MPI and OMP parallelization the 2M test model
was processed on the Beowulf and Pan platforms in less than
250 core/hours.

10.5.2 Efficiency

With the extensive processing resources available on the Pan cluster a
large number of FDS models can be run concurrently, each with optimum
parallelization. However in fire engineering applications it may not be
possible to process a large number of models concurrently as the results of
earlier models often determine parameters for later models.

While FDS model run-time is a critical path component of a fire engineering
project it is preceded by model development and followed by analysis and
reporting of results. Staged modelling may be more productive as it allows
for concurrent model development, analysis, reporting and simulation.

The Pan cluster has the computational capacity to run hundreds of FDS
models concurrently, each with optimum parallelization. Concurrent
modelling on this platform will provide the fastest processing solution
where a large number of simulations are required.

The Beowulf cluster has limited parallel processing resources. While the
fastest individual model run-time is achieved by committing all 16
processes to MPI on a single model, the system can be used more
efficiently by running two (or more) models in parallel, each with less than
the optimum MPI processes for minimum run-time.

Table 4 summarises the overall processing time benefit of concurrent
modelling on the Beowulf cluster for the 2M model.

Page 38 of 61

Number of
Concurrent
Models

MPI
Processes per
Model

Total
Processing
Time (hours)

Improvement
over Serial
Processing

1 16 6.7 0%
2 8 11.2 17%
4 4 19.7 26%
8 2 26.6 50%

Table 4. Concurrent Modelling Efficiency and Run-Time

(Beowulf cluster, 2M model)

10.6 Variation in MPI Processing Time

The key measurement from all of the models run for this project was run-time as
reported in the FDS .out file. These individual measurements do not provide an
understanding the variability of run-time for any particular model. Some
variability is expected due to changes in OS demands over time, network
availability and processing latency.

In order to examine run-time variability two models were run 100 times on the
Beowulf cluster with the resulting data summarised as probability distributions.
The task was automated by a shell script file (Appendix C) which extracted and
compiled individual model run-times before overwriting the FDS output files.

While it would have been instructive to complete similar tests on the Pan cluster
this could not be completed within the allocated computing resources provided
for the project.

The two fastest test models from the 32K and 260K computational domains
were used in this test, each with 16 MPI processes. The 2M model was not
tested because processing time would have been excessive (estimated to be
600 hours).

Summary statistics are presented in Table 5 and the associated probability plots
are shown in Figures 14 and 15.

Computational Domain Mean Run-Time Standard Deviation
 (s) (s)

32K 190.6 2.15
260K 1,786.9 7.69

Table 5. Summary Run-Time Statistics

The probability plots show that MPI run-time on the Beowulf cluster is Normally
Distributed with little variance. It follows that the individual run-time data
measurements are likely to be good estimates of typical run-time performance.

Page 39 of 61

Run-time can be expected to be within +/- 3% of the mean for 99.7% of
simulations (3 Sigma limits).

Figure 14. 32K Domain Run-Time Probability Plot

Figure 15. 260K Domain Run-Time Probability Plot

-3

-2

-1

0

1

2

3

184 186 188 190 192 194 196 198

S
ta

n
d

a
rd

 N
o

rm
a

l
D

e
v

ia
ti

o
n

s

Run Time (s)

-3

-2

-1

0

1

2

3

1750 1760 1770 1780 1790 1800 1810 1820

S
ta

n
d

a
rd

 N
o

rm
a

l
D

e
v

ia
ti

o
n

s

Run Time (s)

Page 40 of 61

10.7 Variation in FDS Output

Ideally, a given model with a given resolution will produce identical FDS outputs
on different platforms and/or with different mesh configurations. However mesh
boundary effects, the finite resolution of digital computer number systems,
differences in numeric algorithms (in firmware or software) and the cumulative
effects of rounding over large numbers of calculations are expected to cause
variation in FDS output.

Typical FDS DEVICE outputs (a point smoke detector and two thermal LINKS)
were used as metrics to compare identical FDS models run on different
hardware platforms. Refer to the FDS model at Appendix A for DEVICE
characteristics and locations.

The measured data and associated summaries are contained in Appendix E.

Changes in the computational domain cell size are expected to change the
output metrics. This is a direct consequence of the spatial averaging that occurs
as computational domain cell dimensions are changed. This aspect of model
performance would normally be the subject of sensitivity analysis when selecting
the computational cell size (Section 4.6 above).

It was also expected that a smaller computational domain cell size should
generally produce a ‘better’ simulation. It follows that DEVICE activation in the
2M model will be a better representation of the performance of a real device
than either the 260K or 32K models.

10.7.1 FDS Verification

While FDS is subjected to comprehensive testing prior to the release of
any update this cannot possibly account for every possible user
environment including hardware, operating system and compiler. It follows
that an FDS installation on any particular computer platform should be
subjected to verification. The reasons for this are explained in detail in the
FDS Verification Guide19 which also provides an installation verification test
suite in Appendix B, Table B1. This project is primarily about FDS run-time
hence the veracity of the FDS output has not been subject to verification on
the Pan Cluster. One might reasonably expect that verification should be
completed on every FDS installation, but anecdotally verification is seldom
completed.

10.7.2 Findings

A given model, platform and parallelization produced identical results for all
recorded FDS output variables. This held throughout the hundreds of run-
time variation tests described in Section 10.5.

Page 41 of 61

A given model run on different platforms and/or with different parallelization
produced changes in the FDS output variables.

On a given hardware platform the 32K metrics were larger (corresponding
to delayed activation) compared with the 260K and 2M metrics. This is
considered to be a direct consequence of spatial averaging.

Variation of the metrics tended to increase with increasing computational
domain size (with the exception on the Pan Cluster 2M models). This is
considered to be due to the increased number of calculations required to
process a larger computational domain, and the cumulative effects of finite
precision arithmetic.

The maximum percentage variation was greater than +/- 5.6% about the of
the mid-range on the Pan Cluster with the 260K model.

10.7.3 Discussion

A fire engineering design that hinges on just a few percent of DEVICE
activation (or some other parameter of interest) for success should be
viewed with a certain amount of scepticism and critically assessed for other
safety factors in the design and sensitivity. FDS is, after all, a simplified
model of the situation under consideration.

Extensive FDS validation18 suggests that an appropriate model can be
expected to produce results within useful bounds of a fire experiment.
However fire is a stochastic process and even laboratory experiments
under tightly controlled conditions can produce unexpected results.

Page 42 of 61

11 Conclusions

The following conclusions are drawn from the body of this report. It should be
apparent from the body of this report that these are specific to the hardware, the
model and the simulation options selected.

11.1 Commercial HPC

Commercial HPC is a viable resource for running FDS when a large number of
concurrent simulations must be completed in a relatively short time frame to
meet project deadlines.

• Data download times can be an appreciable from commercial providers.

Transfer of data using physical media (such as an external hard drive)
may be warranted.

• The use of HPC resources will not significantly decrease the time to
complete a single simulation. HPC cannot reduce the critical path for
projects that require models to be developed serially (for example, where
the output of earlier models provides input for later models).

• More modest computational platforms can provide better run-time

performance than HPC resources for model development and concurrent
processing of a limited number of models.

• FDS verification results should be available for any HPC platform (and
more generally for any FDS installation).

11.2 Parallelization

Parallelization with MPI and OMP will reduce simulation run-time.

• The extent of run-time reduction is both model and hardware specific. In
this project optimum use of parallel processing resources produced run-
time improvements of over 90%.

• MPI was demonstrated to be more productive than OMP. The maximum

run-time gain from OMP was approximately 50%. Allocation of more than
about 8 OMP processes may be counter-productive.

• With modest computational platforms improvements in the overall project

FDS processing time may be achieved by concurrent modelling with less
than optimal parallelization applied to individual models.

Page 43 of 61

11.3 Computational Domain

Simulation run-time increases with increasing computational domain size.
Halving the basic cell dimension will increase run-time by a factor of about 16.
Models should therefore use the minimum mesh refinement consistent with
sensitivity analysis of variables to interest for optimum run-time.

Low resolution run times provide a reasonable estimate of higher resolution run
times through scaling.

11.4 Run-Time Variability

Run-time for any particular hardware platform and model is expected to be
Normally distributed with low variance.

11.5 FDS Model Output Variability

A given model on a given platform with a particular assignment of parallelization
will produce identical FDS outputs with successive simulations.

Increased parallelization and the specification of additional meshes can lead to
increases in FDS model output variability. The extent of variability is expected
to be more pronounced with increased model resolution.

Subject to the provision of other safety factors, model sensitivity analysis to
parallelization may be warranted when the success of a fire engineering design
hinges on results within a few percent of failure thresholds.

Page 44 of 61

12 References

1. Fire Dynamics Simulator, National Institute of Standards and Technology
(NIST), USA Department of Commerce, Version 6.2.0, 2015

2. Yoh, H et al, ‘Parallel Computing of Numerical Simulation in Building Fires’,

Journal of Computers, Vol. 7, No. 11, Nov. 2012

3. http://www.thunderheadeng.com/pyrosim/benchmarks/#runtime

4. Amdahl, G. M., ‘Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities’, AFIPS Conference Proc. (30): 483–
485, 1967

5. McGrattan, K., https://github.com/firemodels/fds-smv/wiki/OpenMP-Notes,

2013

6. McGrattan, K, et al., ‘Fire Dynamics Simulator Users Guide’, National

Institute of Standards and Technology (NIST), USA Department of
Commerce, Special Publication 1019, 6th Ed., 2015

7. http://www.intel.com/content/www/us/en/architecture-and-

technology/hyper-threading/hyper-threading-technology.html

8. https://en.wikipedia.org/wiki/Prime95

9. Layton, J., ‘Using RSH or SSH Raw Ethernet and Cluster Computing

Courses’, http://www.clustermonkey.net/Beowulf-List/using-rsh-or-ssh-
raw-ethernet-and-cluster-computing-courses.html

10. https://github.com/firemodels/fds-smv/wiki/FDS-Release-Notes, FDS 6.3.0

Output

11. https://wiki.auckland.ac.nz/display/CER/NeSI+Pan+Cluster

12. https://www.nesi.org.nz/about-us

13. https://en.wikipedia.org/wiki/Beowulf_cluster

14. https://groups.google.com/forum/#!msg/fds-

smv/xEmzcnHHpTI/_MY3s49RVkUJ

15. Ministry of Business Innovation and Employment, ‘C/VM2 Verification

Method: Framework for Fire Safety Design for New Zealand Building Code
Clauses C1-C6 Protection from Fire’, Amendment 4, 2014

16. http://slurm.schedmd.com/documentation.html

Page 45 of 61

17. http://www.clustermonkey.net/Beowulf-List/using-rsh-or-ssh-raw-ethernet-
and-cluster-computing-courses.html

18. McGrattan, K. et al., ‘Fire Dynamics Simulator Technical Reference Guide,

Volume 3: Validation’, NIST Special Pub. 1018-3, 6th Ed., 18 Nov. 2015

19. McGrattan, K. et al., ‘Fire Dynamics Simulator Technical Reference Guide,

Volume 2: Verification’, NIST Special Pub. 1018-2, 6th Ed., 13 Apr. 2015

Page 46 of 61

Appendix A FDS Test Model

The following text describes the proposed FDS input file. Mesh allocations and
basic cell dimensions are to be adjusted as appropriate to each test case shown
in Tables 1 and 2.

&HEAD CHID='HPC'/
&TIME T_END=180.0/
&DUMP RENDER_FILE='HPC.ge1', COLUMN_DUMP_LIMIT=.TRUE., DT_PL3D=30.0,
DT_RESTART=30.0, WRITE_XYZ=.TRUE./
&MISC NOISE=.FALSE./

&MESH ID='MESH', IJK=64,128,32, XB=0.0,8.0,0.0,16.0,0.0,4.0/

&REAC ID='CVM2',
 FYI='CVM2 Ver4',
 FUEL='REAC_FUEL',
 C=1.0,
 H=2.0,
 O=0.5,
 CO_YIELD=0.04,
 SOOT_YIELD=0.07,
 HEAT_OF_COMBUSTION=2.0E4/

&PROP ID='Cleary Photoelectric P2',
 QUANTITY='CHAMBER OBSCURATION',
 ACTIVATION_OBSCURATION=9.7,
 ALPHA_E=1.8,
 BETA_E=-0.8,
 ALPHA_C=0.8,
 BETA_C=-0.8/

&PROP ID='Default',
 QUANTITY='SPRINKLER LINK TEMPERATURE',
 ACTIVATION_TEMPERATURE=68.0,
 RTI=135.0,
 C_FACTOR=0.85/

&DEVC ID='SD', PROP_ID='Cleary Photoelectric P2', XYZ=5.0,3.0,3.75/
&DEVC ID='FEDco', QUANTITY='FED', XYZ=4.25,13.0,2.0/
&DEVC ID='FEDco01', QUANTITY='FED', XYZ=4.25,5.0,2.0/
&DEVC ID='FEDrad', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=4.25,13.0,2.0,

ORIENTATION=0.0,0.0,1.0/
&DEVC ID='FEDrad01', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=4.25,5.0,2.0,

ORIENTATION=0.0,0.0,1.0/
&DEVC ID='FEDtemp', QUANTITY='TEMPERATURE', XYZ=4.25,13.0,0.0/
&DEVC ID='FEDtemp01', QUANTITY='TEMPERATURE', XYZ=4.25,5.0,0.0/
&DEVC ID='LAYER->HEIGHT', QUANTITY='LAYER HEIGHT',

XB=4.25,4.25,13.0,13.0,0.0,4.0/
&DEVC ID='LAYER->LTEMP', QUANTITY='LOWER TEMPERATURE',

XB=4.25,4.25,13.0,13.0,0.0,4.0/
&DEVC ID='LAYER->UTEMP', QUANTITY='UPPER TEMPERATURE',
 XB=4.25,4.25,13.0,13.0,0.0,4.0/
&DEVC ID='LAYER01->HEIGHT', QUANTITY='LAYER HEIGHT',

XB=4.25,4.25,5.0,5.0,0.0,4.0/
&DEVC ID='LAYER01->LTEMP', QUANTITY='LOWER TEMPERATURE',

XB=4.25,4.25,5.0,5.0,0.0,4.0/

Page 47 of 61

&DEVC ID='LAYER01->UTEMP', QUANTITY='UPPER TEMPERATURE',
XB=4.25,4.25,5.0,5.0,0.0,4.0/

&DEVC ID='SLINK', PROP_ID='Default', XYZ=1.75,10.0,3.75/
&DEVC ID='SLINK01', PROP_ID='Default', XYZ=5.0,6.75,3.75/

&SURF ID='FIRE1',
 FYI='Fire',
 COLOR='RED',
 HRRPUA=1.333E4,
 TAU_Q=-655.0/

&OBST XB=4.5,5.5,9.25,10.75,0.0,0.5, PERMIT_HOLE=.FALSE.,

THICKEN=.TRUE.,SURF_IDS='FIRE1','INERT','INERT'/ Obstruction

&VENT SURF_ID='OPEN', XB=6.25,7.0,16.0,16.0,0.0,2.0/ Vent
&VENT SURF_ID='OPEN', XB=8.0,8.0,1.5,2.25,8.882E-16,2.0/ Vent01

&SLCF QUANTITY='TEMPERATURE', PBY=10.0/
&SLCF QUANTITY='TEMPERATURE', PBX=5.0/
&SLCF QUANTITY='TEMPERATURE', PBZ=2.0/
&SLCF QUANTITY='VISIBILITY', PBY=10.0/
&SLCF QUANTITY='VISIBILITY', PBX=5.0/
&SLCF QUANTITY='VISIBILITY', PBZ=2.0/
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBY=10.0/
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBX=5.0/
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBZ=2.0/
&SLCF QUANTITY='TEMPERATURE', PBX=4.75/
&SLCF QUANTITY='TEMPERATURE', PBY=9.5/
&SLCF QUANTITY='VISIBILITY', PBX=4.75/
&SLCF QUANTITY='VISIBILITY', PBY=9.5/
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBX=4.75/
&SLCF QUANTITY='VELOCITY', VECTOR=.TRUE., PBY=9.5/
&SLCF QUANTITY='TEMPERATURE', PBZ=3.75/
&SLCF QUANTITY='VELOCITY', PBZ=3.75/
&SLCF QUANTITY='VISIBILITY', PBZ=3.75/
&SLCF QUANTITY='TURBULENCE RESOLUTION', PBX=5.0/
&SLCF QUANTITY='TURBULENCE RESOLUTION', PBY=10.0/
&SLCF PBY=10, QUANTITY='SCALAR RESOLUTION', QUANTITY2='MASS FRACTION',

SPEC_ID='NITROGEN' /
&SLCF PBX=5, QUANTITY='SCALAR RESOLUTION', QUANTITY2='MASS FRACTION',

SPEC_ID='NITROGEN' /

&TAIL /

Page 48 of 61

Appendix B SLURM Script

The following is a typical SLURM script used for submission of FDS jobs onto
the Pan cluster. The purpose of incorporating this information in this report is to
provide the reader with a shell for any FDS submissions that they might make to
the Pan cluster, and also to advise that of the need to become familiar with any
batch management system on an HPC computing platform.

The technical support personnel and system documentation were exceedingly
helpful in facilitating this project and getting FDS to run on the Pan cluster.

The file is modified for the specific FDS input file and the allocation of parallel
resources, saved in the model directory with an appropriate file-name with a .sl
(script language) extension.

The file is then submitted to SLURM with the command sbatch file-name.sl.

#!/bin/bash
#SBATCH -J M05-4-2
#SBATCH -A nesi00202
#SBATCH -p merit
#SBATCH --workdir=/projects/nesi00202/HPC/M05-4-2
#SBATCH --time=100:00:00
#SBATCH -o hpc1_%J.out
#SBATCH -e hpc1_%J.err
#SBATCH --mem-per-cpu=4096
#SBATCH --ntasks=4
#SBATCH --cpus-per-task=2
#SBATCH --mail-type=ALL
#SBATCH --mail-user=xxx@yyy.zzz
#SBATCH -C sb

module load FDS/6.2.0-intel-2015a

srun fds_mpi HPC05-4.fds

Page 49 of 61

Appendix C BASH Script

The following is the Linux BASH script used on the Beowulf cluster to complete
multiple submissions of a single FDS model with extraction and compilation of
run-time and device data for statistical analysis. The output from individual
models is progressively overwritten. Note that the \ character for continuation
lines has been incorporated in the listing below for clarity.

This is almost certainly not the most elegant script solution ever written (a script
file expert is unlikely to be impressed) but it is reasonably self-explanatory, it
works, and it is easily modified for extracting other model information.

The script file was named runtime.sh, loaded in the model directory and
executed using the file name: runtime.

#!/bin/sh

echo "List of Files:"

for cases in {1..100}

do

mpirun -x OMP_NUM_THREADS=1 -np 16 -host \
Master,Slave0,Slave1,Slave2 fds HPC20-16.fds

 wait

time=$(grep -w 'Total Elapsed' \
HPC20-16.out | grep -o -E '[0-9.]'+)

 sd=$(grep -w '1 SD' HPC20-16.out)
 sd=${sd##*SD}
 sd=${sd%% s}

 as1=$(grep -w '14 SLINK' HPC20-16.out)
 as1=${as1##*SLINK}
 as1=${as1%% s}

 as2=$(grep -w '15 SLINK01' HPC20-16.out)
 as2=${as2##*SLINK01}
 as2=${as2%% s}

 echo $time $sd $as1 $as2 >> runtime.txt

 echo $cases $time $sd $as1 $as2

done

Page 50 of 61

Appendix D Comparative MPI and OMP Graphics

Figures D1 to D11 show the test model run-time difference between the Pan and
Beowulf hardware platforms with both OMP and MPI parallelization and
increasing mesh resolution.

Analysis of these results is incorporated in Section 10.3.

Figure D1. Simulation Time with Increasing OMP Parallelization

2 MPI Processes, 32K Computational Domain

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
s)

OMP Processes

Beowulf

Pan

Page 51 of 61

Figure D2. Simulation Time with Increasing OMP Parallelization

4 MPI Processes, 32K Computational Domain

Figure D3. Simulation Time with Increasing OMP Parallelization

8 MPI Processes, 32K Computational Domain

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
s)

OMP Processes

Beowulf

Pan

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
s)

OMP Processes

Beowulf

Pan

Page 52 of 61

Figure D4. Simulation Time with Increasing OMP Parallelization

16 MPI Processes, 32K Computational Domain

Figure D5. Simulation Time with Increasing OMP Parallelization

2 MPI Processes, 260K Computational Domain

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
s)

OMP Processes

Beowulf

Pan

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

OMP Processes

Beowulf

Pan

Page 53 of 61

Figure D6. Simulation Time with Increasing OMP Parallelization

4 MPI Processes, 260K Computational Domain

Figure D7. Simulation Time with Increasing OMP Parallelization
8 MPI Processes, 262,144 Cell Computational Domain

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

OMP Processes

Beowulf

Pan

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

OMP Processes

Beowulf

Pan

Page 54 of 61

Figure D8. Simulation Time with Increasing OMP Parallelization

16 MPI Processes, 260K Computational Domain

Figure D9. Simulation Time with Increasing OMP Parallelization

2 MPI Processes, 2M Computational Domain

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
m

in
)

OMP Processes

Beowulf

Pan

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
h

r)

OMP Processes

Beowulf

Pan

Page 55 of 61

Figure D10. Simulation Time with Increasing OMP Parallelization

4 MPI Processes, 2M Computational Domain

Figure D11. Simulation Time with Increasing OMP Parallelization

8 MPI Processes, 2M Computational Domain

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
h

r)

OMP Processes

Beowulf

Pan

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e

 (
h

r)

OMP Processes

Beowulf

Pan

Page 56 of 61

Appendix E FDS DEVICE Activation Times

32K Computational Domain

OMP Smoke (s) Link (s) Link01 (s)
1 40.9 179.1 170.6
2 40.9 179.1 170.6
4 40.9 179.6 169.0

Minimum 40.9 179.1 169.0
Maximum 40.9 179.6 170.6
Range 0 0.5 1.6
Mid-Range Variation +/- 0% +/- 0.1% +/- 0.5%

Table E1. FDS Device Activation Times on Windows Workstation

(32K Computational Domain)

260K Computational Domain
OMP Smoke (s) Link (s) Link01 (s)

1 37.7 158.9 151.1
2 37.7 160.6 153.2
4 37.7 158.9 151.5

Minimum 37.7 158.9 151.1
Maximum 37.7 160.6 153.2
Range 0 1.7 2.1
Mid-Range Variation +/- 0% +/- 0.5% +/- 0.7%

Table E2. FDS Device Activation Times on Windows Workstation

(260K Computational Domain)

2M Computational Domain

OMP Smoke (s) Link (s) Link01 (s)
1 39.4 165.8 157.2
2 39.4 165.8 157.2
4 39.4 164.0 157.5

Minimum 39.4 164.0 157.2
Maximum 39.4 165.8 157.5
Range 0 1.8 0.3
Mid-Range Variation +/- 0% +/- 0.6% +/- 0.1%

Table E3. FDS Device Activation Times on Windows Workstation

(2M Computational Domain)

Page 57 of 61

32K Computational Domain

MPI OMP Smoke (s) Link (s) Link01 (s)
1 1 40.9 179.1 170.6
1 2 40.9 179.1 170.6
1 4 40.9 179.1 170.6
2 1 40.9 179.1 170.6
2 2 40.9 179.1 170.6
2 4 40.9 179.1 169.1
4 1 40.9 178.1 170.4
4 2 40.9 178.1 170.4
4 4 40.9 178.1 170.4
8 1 41.1 179.4 168.5
8 2 41.1 179.4 168.5
16 1 41.1 179.4 169.8

Minimum 40.9 178.1 168.5
Maximum 41.1 179.4 170.6
Range 0.2 1.3 2.1
Mid-Range Variation +/- 0.3% +/- 0.4% +/- 0.6%

Table E4. FDS Device Activation Times on Beowulf Cluster

(32K Computational Domain)

260K Computational Domain
MPI OMP Smoke (s) Link (s) Link01 (s)

1 1 37.7 158.9 151.5
1 2 37.7 158.9 151.5
1 4 37.7 158.9 151.5
2 1 38.0 158.1 150.3
2 2 38.0 158.1 150.3
2 4 38.0 158.1 150.3
4 1 37.6 159.2 153.7
4 2 37.6 159.2 153.7
4 4 37.6 159.2 153.7
8 1 38.9 158.6 151.3
8 2 38.9 158.6 151.3
16 1 37.3 157.6 153.1

Minimum 37.3 157.6 150.3
Maximum 38.9 159.2 153.7
Range 1.6 1.6 3.4
Mid-Range Variation +/- 2.1% +/- 0.5% +/- 1.1%

Table E5. FDS Device Activation Times on Beowulf Cluster

(260K Computational Domain)

Page 58 of 61

2M Computational Domain

MPI OMP Smoke (s) Link (s) Link01 (s)
1 1 39.4 165.8 157.2
1 2 39.4 165.8 157.2
1 4 39.4 165.8 157.2
2 1 37.8 163.8 157.5
2 2 37.8 163.8 157.5
2 4 37.8 163.5 155.6
4 1 39.7 163.1 157.4
4 2 40.9 178.1 170.4
4 4 39.7 163.1 157.4
8 1 37.3 166.5 156.7
8 2 37.3 166.5 156.7
16 1 38.9 162.4 158.5

Minimum 37.3 162.4 155.6
Maximum 40.9 178.1 170.4
Range 3.6 15.7 14.8
Mid-Range Variation +/- 4.6% +/- 4.6% +/- 4.5%

Table E6. FDS Device Activation Times on Beowulf Cluster

(2M Computational Domain)

Page 59 of 61

32K Computational Domain

MPI OMP Smoke (s) Link (s) Link01 (s)
1 1 41.0 179.8 169.5
1 2 41.0 179.8 169.5
1 4 41.0 179.8 169.5
1 8 41.0 179.8 169.5
1 16 41.0 DNA 170.2
2 1 40.9 178.5 169.4
2 2 40.9 178.5 169.4
2 4 40.9 178.4 169.4
2 8 40.9 178.5 169.4
2 16 40.9 178.8 170.3
4 1 40.9 179.1 170.2
4 2 40.9 DNA 170.8
4 4 40.9 DNA 170.1
4 8 40.9 178.9 171.5
4 16 40.9 179.0 170.3
8 1 41.1 179.7 170.2
8 2 41.1 179.6 170.3
8 4 41.1 180.0 170.2
16 1 41.2 178.9 170.5
16 2 41.2 179.9 170.1
16 4 41.2 178.9 170.5
16 8 41.2 178.9 170.5
16 16 41.2 179.2 170.2

Minimum 40.9 178.4 169.4
Maximum 41.2 >180.0 171.5
Range 0.3 >1.6 2.1
Mid-Range Variation +/- 0.4% >+/-0.5% +/- 0.6%

Note: DNA: Did Not Activate within the 180 second simulation time.

Table E7. FDS Device Activation Times on Pan Cluster

(32K Computational Domain)

Page 60 of 61

260K Computational Domain

MPI OMP Smoke (s) Link (s) Link01 (s)
1 1 37.8 162.6 155.5
1 2 37.8 162.6 155.5
1 4 37.8 162.6 155.5
1 8 37.8 162.6 155.5
1 16 37.8 160.8 154.4
2 1 38.1 162.9 156.8
2 2 38.1 162.9 156.8
2 4 38.1 164.2 157.1
2 8 38.1 162.9 156.8
2 16 38.1 163.5 154.6
4 1 37.7 161.6 158.6
4 2 37.7 162.6 155.9
4 4 37.7 161.7 157.4
8 1 38.8 162.8 156.3
8 2 38.8 162.8 156.3
8 4 38.8 162.2 157.2
8 8 41.1 179.8 170.2
8 16 41.1 DNA 170.6
16 1 37.2 162.0 156.5

Minimum 37.2 160.8 154.4
Maximum 41.1 >180.0 170.6
Range 3.9 >19.2 16.2
Mid-Range Variation +/- 5.0% >+/-5.6% +/- 5.0%

Note: DNA: Did Not Activate within the 180 second simulation time.

Table E8. FDS Device Activation Times on Pan Cluster

(260K Computational Domain)

Page 61 of 61

2M Computational Domain
MPI OMP Smoke (s) Link (s) Link01 (s)

1 1 38.3 168.2 160.8
1 2 38.3 167.5 159.1
1 4 38.3 167.7 159.7
1 8 38.3 168.0 159.6
1 16 38.3 167.5 160.0
2 1 39.4 168.3 160.5
2 2 39.4 167.0 160.0
2 4 39.4 167.3 160.3
2 8 39.4 166.6 160.5
2 16 39.4 167.5 159.5
4 1 37.2 168.0 159.6
4 2 37.2 167.4 159.4
4 4 37.2 169.2 160.3
8 1 37.8 166.3 162.1
8 2 37.8 167.5 160.5
8 4 37.8 167.1 159.5
16 1 38.7 169.5 159.2

Minimum 37.2 166.3 159.1
Maximum 39.4 169.5 162.1
Range 2.2 3.2 3.0
Mid-Range Variation +/- 2.9% +/-1.0% +/- 0.9%

Table E9. FDS Device Activation Times on Pan Cluster
(2M Computational Domain)

